2024年成考高起点《数学(理)》每日一练试题01月27日
精选习题
2024-01-27 12:21:41
收藏

单选题

1、已知全集U=R,A={x|x≥1},B={x|-1

  • A:{x|x≤2}
  • B:{x|x<2}
  • C:{x|-1
  • D:{x|-1

答 案:A

解 析:补集运算应明确知道是否包括端点.A在U中的补集是x<1,  

2、已知向量a=(3,4),向量 b=(0,-2),则cos的值为()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:求cos可直接用公式cos a·b=(3,4)·(0,-2)=3×0+4×(-2)=8,  

3、将一颗骰子抛掷1次,到的点数为偶数的概率为  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:一颗骰子的点数分别为1,2,3,4,5,6,其中偶数与奇数各占一半,故抛掷1次,得到的点数为偶数的概率为

4、( )

  • A:-2
  • B:
  • C:
  • D:2

答 案:C

主观题

1、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽

答 案:如图, ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD==60m, 即河宽为60m  

2、已知数列的前n项和 求证:是等差数列,并求公差和首项。  

答 案:  

3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

4、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.

答 案:由△ABC的面积为所以AB =4.因此所以

填空题

1、的展开式是()

答 案:

解 析:

2、lg(tan43°tan45°tan47°)=()  

答 案:0

解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0

更多推荐
微信扫码添加老师微信
2024/10/19~2024/10/20
4 7
更多
准考证
2024年10月14日~10月20日
考试
2024年10月19日~10月20日
成绩查询
2024年11月25日~12月31日
入学
第二年3月