2024年成考高起点《数学(文史)》每日一练试题01月27日
精选习题
2024-01-27 12:26:13
收藏

单选题

1、函数f(x)=当x∈[-2,+∞)时是增函数,当x∈(-∞,-2]时是减函数,则f(1)=()  

  • A:-3
  • B:13
  • C:7
  • D:由m而定的常数

答 案:B

解 析:由题意知抛物线的对称轴为x=-2,  

2、设M=那么()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析: M是集合,a为元素,{a}为集合,元素与集合的关系是集合与集合的关系是  

3、函数f(x)=的单调增区间是()

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:中的的减区间就为f(x)的增区间,设u(x)=当x∈R时,u(x)>0,函数u(x)在是减函数, 上是增函数 故f(x)=的单调增区间为 ps:关于复合函数的问题要逐步分清每一层次的函数的图像和性质,再结合起来考虑整体,有时也可画出部分函数的图像来帮助分析和理解.  

4、函数与y的图像之间的关系是  

  • A:关于原点对称
  • B:关于x轴对称
  • C:关于直线 y=1对称
  • D:关于y轴对称

答 案:D

解 析:关于y轴对称,

主观题

1、设函数f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的单调区间

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 当x<-3时,f'(x)>0; 当-32时,f'(x)>0; 故f(x)的单调递减区间为(-3,2),f(x)的单调递增区间为(-∞,-3),(2,+∞)  

2、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)  

答 案:如图  

3、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值  

答 案:(Ⅰ)当n=1时,由 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:  

4、已知三角形的一个内角是,面积是周长是20,求各边的长.  

答 案:设三角形三边分别为a,b,c,∠A=60°,  

填空题

1、函数的图像与坐轴的交点共有()个  

答 案:2

解 析:当x=0,故函数与y轴交于(0,-1)点;令y=0,则有故函数与工轴交于(1,0)点,因此函数与坐标轴的交点共有2个

2、函数f(x)=在区间[-3,3]上的最大值为()  

答 案:4

解 析:这题考的是高次函数的最值问题,可用导数来求函数在区间[-3,3]上的最值。 列出表格 由上表可知函数在[-3,3]上,在x=1点处有最大值为4.  

更多推荐
微信扫码添加老师微信
2024/10/19~2024/10/20
4 3
更多
准考证
2024年10月14日~10月20日
考试
2024年10月19日~10月20日
成绩查询
2024年11月25日~12月31日
入学
第二年3月