2024年成考高起点《数学(文史)》每日一练试题01月29日
精选习题
2024-01-29 12:07:48
收藏

单选题

1、下列函数为奇函数的是 ( )。

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:本题主要考查的知识点为函数的奇偶性.  【应试指导】f(z)=sinx=-sin(-x)=-f(-x),所以y=sinx为奇函数.        

2、设α是三角形的一个内角,若,则sinα=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由题知0<α<兀,而,故,因此.

3、用1,2,3,4一组成没有重复数字的三位数,其中偶数共有()

  • A:24个
  • B:12个
  • C:6个
  • D:3个

答 案:B

解 析:若三位数为偶数,个位数只能从2,4中选一个,故没有重复数字的偶数三位数为

4、设函数f(x十1)=2x+2,则f(x)=()

  • A:2x-1
  • B:2x
  • C:2x+1
  • D:2x+2

答 案:B

解 析:f(x十1)=2x+2=2(x+1),令t=x+1,故f(t)=2t,把t换成x,因此f(x)=2x.

主观题

1、设函数f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的单调区间

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 当x<-3时,f'(x)>0; 当-32时,f'(x)>0; 故f(x)的单调递减区间为(-3,2),f(x)的单调递增区间为(-∞,-3),(2,+∞)  

2、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值  

答 案:(Ⅰ)当n=1时,由 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:  

3、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)  

答 案:如图  

4、已知三角形的一个内角是,面积是周长是20,求各边的长.  

答 案:设三角形三边分别为a,b,c,∠A=60°,  

填空题

1、点(4,5)关于直线y=x的对称点的坐标为()

答 案:(5,4)

解 析:点(4,5)关于直线y=x的对称点为(5,4).

2、函数的图像与坐轴的交点共有()个  

答 案:2

解 析:当x=0,故函数与y轴交于(0,-1)点;令y=0,则有故函数与工轴交于(1,0)点,因此函数与坐标轴的交点共有2个

更多推荐
微信扫码添加老师微信
2024/10/19~2024/10/20
4 1
更多
准考证
2024年10月14日~10月20日
考试
2024年10月19日~10月20日
成绩查询
2024年11月25日~12月31日
入学
第二年3月