单选题
1、设α是三角形的一个内角,若,则sinα=()
答 案:D
解 析:由题知0<α<兀,而,故,因此.
2、已知点M(-2,5),N(4,2),点P在上,且=1:2,则点P的坐标为()
答 案:B
解 析:由题意得:
3、不等式|2x-3|≤1的解集为()
答 案:A
解 析:故原不等式的解集为{x|1≤x≤2}
4、设成等比数列,则x等于
答 案:C
解 析:由已知条件的得
主观题
1、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由得设A(x1,y1).B(x2,y2),则因此
3、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值
答 案:(Ⅰ)当n=1时,由得 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:
4、已知三角形的一个内角是,面积是周长是20,求各边的长.
答 案:设三角形三边分别为a,b,c,∠A=60°,
填空题
1、函数y=的定义域是()
答 案:[1,+∞)
解 析:要是函数y=有意义,需使 所以函数的定义域为{x|x≥1}=[1,+∞)
2、()
答 案:3
解 析: