2024年成考高起点《数学(文史)》每日一练试题02月02日
精选习题
2024-02-02 12:11:10
收藏

单选题

1、点(2,4)关于直线y=x的对称点的坐标为()  

  • A:(4,2)
  • B:(-2,-4)
  • C:(-2,4)
  • D:(-4,-2)

答 案:A

解 析:点(2,4) 关于直线y=x对称的点为(4,2)

2、甲袋内有2个白球3个黑球,乙袋内有3个白球1个黑球,现从两个袋内各摸出1个球,摸出的两个球都是白球的概率是

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由已知条件可知此题属于相互独立同时发生的事件,从甲袋内摸到白球的概率为P(A)=乙袋内摸到白球的概率为,所以现从两袋中各提出一个球,摸出的两个都是白球的概率为

3、已知向量a=(3,4),b=(0,-2),则cos=()  

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:因为a=(3,4),b=(0,-2),  

4、已知数列前n项和则第5项的值是()

  • A:7
  • B:10
  • C:13
  • D:16

答 案:C

解 析:=3n-2.当n=5时,=3×5-2=13

主观题

1、每亩地种果树20棵时,每棵果树收入90元,如果每亩增种一棵,每棵果树收入就下降3元,求使总收入最大的种植棵数.  

答 案:设每亩增种x棵,总收入味y元,则每亩种树(20+x)棵,由题意知增种x棵后每棵收入为(60-3x) 则有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 当x=5时,y有最大值,所以每亩地最多种25棵

2、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

3、已知三角形的一个内角是,面积是周长是20,求各边的长.  

答 案:设三角形三边分别为a,b,c,∠A=60°,  

4、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.

答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积

填空题

1、函数y=的定义域是()

答 案:[1,+∞)

解 析:要是函数y=有意义,需使 所以函数的定义域为{x|x≥1}=[1,+∞)  

2、不等式的解集是()  

答 案:

解 析:

更多推荐
微信扫码添加老师微信
2024/10/19~2024/10/20
3 8
更多
准考证
2024年10月14日~10月20日
考试
2024年10月19日~10月20日
成绩查询
2024年11月25日~12月31日
入学
第二年3月