单选题
1、函数y=x2+1(x>0)的图像在()
答 案:A
解 析:当x>0时,函数y=x2+1>0,因此函数的图像在第一象限.
2、已知成等差数列,且为方程的两个根,则的值为()
答 案:D
解 析:由根与系数的关系得由等差数列的性质得
3、函数f(x)=当x∈[-2,+∞)时是增函数,当x∈(-∞,-2]时是减函数,则f(1)=()
答 案:B
解 析:由题意知抛物线的对称轴为x=-2,
4、设集合 ()。
答 案:A
解 析:本题主要考查的知识点为集合的运算。 由题意M={-1,1},N={1},所以M∩N=(1}。
主观题
1、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值
答 案:(Ⅰ)当n=1时,由得 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:
2、每亩地种果树20棵时,每棵果树收入90元,如果每亩增种一棵,每棵果树收入就下降3元,求使总收入最大的种植棵数.
答 案:设每亩增种x棵,总收入味y元,则每亩种树(20+x)棵,由题意知增种x棵后每棵收入为(60-3x) 则有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 当x=5时,y有最大值,所以每亩地最多种25棵
3、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。
答 案:(I)由题意,该抛物线的焦点到准线的距离为 所以抛物线C的方程为y2=2x. (Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2, 可得 m=因此A点坐标为 设B点坐标为
4、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
填空题
1、曲线在点(1,1)处的切线方程是______。
答 案:2x+y-3=0
解 析:本题主要考查的知识点为切线方程。 由题意,该切线斜率,又过点(1,1),所以切线方程为y-1=-2(x-1),即2x+y-3=0。
2、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。
答 案:
解 析:本题主要考查的知识点为圆的切线. 设切点(x0,y0)则有 即所以故切点横坐标为