单选题
1、设α是第一象限角,则sin2α=()。
答 案:C
解 析:本题主要考查的知识点为三角函数的二倍角公式。 α在第一象限,则
2、函数的定义域是()
答 案:D
解 析:由题可知x2-4x+3≥0,解得x≥3或x≤1,故函数的定义域为{x|x≤1或x≥3}.
3、设()。
答 案:D
解 析:本题主要考查的知识点为对数函数的性质。
4、在△ABC中,三边为a、b、c,∠B=60°,则的值是()
答 案:C
解 析:由已知用余弦定理得:
主观题
1、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。
答 案:(I)由题意,该抛物线的焦点到准线的距离为 所以抛物线C的方程为y2=2x. (Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2, 可得 m=因此A点坐标为 设B点坐标为
2、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.
答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积
3、设椭圆的中心是坐标原点,长轴在x轴上,离心率已知点P到圆上的点的最远距离是求椭圆的方程
答 案:由题意,设椭圆方程为 由 设P点到椭圆上任一点的距离为 d, 则在y=-b时,最大,即d也最大。
4、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
填空题
1、函数的图像与坐轴的交点共有()个
答 案:2
解 析:当x=0,故函数与y轴交于(0,-1)点;令y=0,则有故函数与工轴交于(1,0)点,因此函数与坐标轴的交点共有2个
2、不等式的解集是()
答 案:
解 析:或或