2024年成考高起点《数学(文史)》每日一练试题07月03日
考试问答
2024-07-03 12:13:52
收藏

单选题

1、设集合 ()。

  • A:{1}
  • B:{-1}
  • C:{—1,1)
  • D:

答 案:A

解 析:本题主要考查的知识点为集合的运算。 由题意M={-1,1},N={1},所以M∩N=(1}。  

2、从15名学生中选出两人担任正、副班长,不同的选举结果共有()  

  • A:30种
  • B:90种
  • C:210种
  • D:225种

答 案:C

解 析:由已知条件可知本题属于排列问题,

3、对于函数,有下列两个命题:①如果c=o,那么y=f(x)的图像经过坐标原点②如果a<0,那么y=f(x)的图像与x轴有公共点
则()

  • A:①②都为真命题
  • B:①为真命题,②为假命题
  • C:①为假命题,②为真命题
  • D:①②都为假命题

答 案:B

解 析:若c=0,则函数f(x)=ax2+bx过坐标原点,故①为真命题;若a<0,而,则函数f(x)=ax2+bx+c的图像开口向下,与x轴没有交点,故②为假命题。因此选B选项。

4、一批产品共有5件,其中4件为正品,1件为次品,从中一次取出2件均为正品的概率为()。

  • A:0.6
  • B:0.5
  • C:0.4
  • D:0.3

答 案:A

解 析:本题主要考查的知识点为随机事件的概率。 一次取出2件均为正品的概率为

主观题

1、设椭圆的中心是坐标原点,长轴在x轴上,离心率已知点P到圆上的点的最远距离是求椭圆的方程  

答 案:由题意,设椭圆方程为 设P点到椭圆上任一点的距离为 d, 则在y=-b时,最大,即d也最大。  

2、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。

答 案:(I)由题意,该抛物线的焦点到准线的距离为 所以抛物线C的方程为y2=2x. (Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2, 可得 m=因此A点坐标为 设B点坐标为

3、已知函数f(x)=(x-4)(x2-a)。(I)求f’(x);
(Ⅱ)若f’(-1)=8,求f(x)在区间[0,4]的最大值与最小值。

答 案:(I)f'(x) =(x-4)'(x2-a)+(x-4)(x2-a)’ =x2-a+2x(x-4) =3x2-8x-a. (Ⅱ)由于f’(-1)=3+8-a=8,得a=3. 令f'(x)=3x2-8x-3=0,解得x1=3,(舍去)又f(0)=12,f(3)=-6,f(4)=0所以在区间[0,4]上函数最大值为12,最小值为-6

4、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.

答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积

填空题

1、曲线在点(1,1)处的切线方程是______。  

答 案:2x+y-3=0  

解 析:本题主要考查的知识点为切线方程。 由题意,该切线斜率,又过点(1,1),所以切线方程为y-1=-2(x-1),即2x+y-3=0。

2、任选一个不大于20的正整数,它恰好是3的整数倍的概率是()  

答 案:

解 析:设n为不大于20的正整数的个数,则n=20,m为在这20个数中3的倍数:3,6、9、12、15、18的个数。 ∴m=6,∴所求概率=  

更多推荐
微信扫码添加老师微信
2025/10/19~2025/10/20
2 7 6
更多
准考证
2025年10月14日~10月20日
考试
2025年10月19日~10月20日
成绩查询
2025年11月20日~12月31日
入学
第二年3月