单选题
1、设双曲线的渐近线的斜率为k,则|k|=()
答 案:D
解 析:双曲线渐近线的斜率为k故本题中k
2、已知集合M =(2,3,5,a),N =(1,3,4,b),若M∩N=(1,2,3),则a,b的值为
答 案:C
解 析:M∩N={2,3,5,a} ∩{1,3,4,6} ={1,2,3} 又因为M中无“1”元素,而有“a”元素,只有a=1 而N中无“2”元素,而有“b元素”,只有b=2
3、从椭圆与x轴额右交点看短轴两端点的视角为60°的椭圆的离心率()
答 案:A
解 析:求椭圆的离心率,先求出a,c.(如图) ,由椭圆定义知
4、过点P(2,3)且在两轴上截距相等的直线方程为()
答 案:B
解 析:选项A中,在x、y 轴上截距为 5.但答案不完整 所以选项B中有两个方程,在x轴上横截距与y轴上的纵截距都为0,也是相等的 选项C,虽然过点(2,3),实质上与选项A相同.选项 D,转化为:答案不完整
主观题
1、设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值
答 案:(Ⅰ)函数的定义域为 (Ⅱ)
2、已知数列的前n项和 求证:是等差数列,并求公差和首项。
答 案:
3、已知等差数列前n项和 (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和
答 案:
4、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每的造价为15元,池底每的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域
答 案:
填空题
1、函数的定义域是()
答 案:
解 析:所以函数的定义域是
2、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()
答 案:7
解 析:由题可知长方体的底面的对角线长为,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为