单选题
1、()。
答 案:D
解 析:本题主要考查的知识点为三角函数的运算。 当时,cosα>sinα>0,所以
2、用1,2,3,4一组成没有重复数字的三位数,其中偶数共有()
答 案:B
解 析:若三位数为偶数,个位数只能从2,4中选一个,故没有重复数字的偶数三位数为
3、函数的最小正周期为
答 案:B
解 析:由正切函数的最小正周期得的最小正周期为
4、函数f(x)=当x∈[-2,+∞)时是增函数,当x∈(-∞,-2]时是减函数,则f(1)=()
答 案:B
解 析:由题意知抛物线的对称轴为x=-2,
主观题
1、已知函数f(x)=(x-4)(x2-a)。(I)求f’(x);
(Ⅱ)若f’(-1)=8,求f(x)在区间[0,4]的最大值与最小值。
答 案:(I)f'(x) =(x-4)'(x2-a)+(x-4)(x2-a)’ =x2-a+2x(x-4) =3x2-8x-a. (Ⅱ)由于f’(-1)=3+8-a=8,得a=3. 令f'(x)=3x2-8x-3=0,解得x1=3,(舍去)又f(0)=12,f(3)=-6,f(4)=0所以在区间[0,4]上函数最大值为12,最小值为-6
2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由得设A(x1,y1).B(x2,y2),则因此
3、已知等差数列{an}中,a1+a3+a5=6,a2+a4+a6=12,求{an}的首项与公差.
答 案:因为{an}为等差数列,则
4、每亩地种果树20棵时,每棵果树收入90元,如果每亩增种一棵,每棵果树收入就下降3元,求使总收入最大的种植棵数.
答 案:设每亩增种x棵,总收入味y元,则每亩种树(20+x)棵,由题意知增种x棵后每棵收入为(60-3x) 则有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 当x=5时,y有最大值,所以每亩地最多种25棵
填空题
1、已知向量a=(3,2),b=(-4,x),且a⊥b,则x=()
答 案:6
解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6.
2、曲线在点(1,1)处的切线方程是______。
答 案:2x+y-3=0
解 析:本题主要考查的知识点为切线方程。 由题意,该切线斜率,又过点(1,1),所以切线方程为y-1=-2(x-1),即2x+y-3=0。