2024年成考高起点《数学(文史)》每日一练试题07月18日
考试问答
2024-07-18 12:15:28
收藏

单选题

1、甲袋内有2个白球3个黑球,乙袋内有3个白球1个黑球,现从两个袋内各摸出1个球,摸出的两个球都是白球的概率是

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由已知条件可知此题属于相互独立同时发生的事件,从甲袋内摸到白球的概率为P(A)=乙袋内摸到白球的概率为,所以现从两袋中各提出一个球,摸出的两个都是白球的概率为

2、袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则这2个球都为红球的概率为()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:两个球都是红球的概率为

3、函数的定义域为()。

  • A:R
  • B:{1}
  • C:{x||x|≤1}
  • D:{x||xl≥1}

答 案:A

解 析:本题主要考查的知识点为函数的定义域。 对于 奇次根号下无要求,故函数的定义域为R。

4、一个袋子中装有标号分别为1,2,3,4的四个球,采用有放回的方式从袋中摸球两次,每次摸出一个球,则恰有一次摸出2号球的概率为()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:本题主要考查的知识点为独立重复试验的概率。 所求概率为

主观题

1、已知等差数列{an}中,a1+a3+a5=6,a2+a4+a6=12,求{an}的首项与公差.  

答 案:因为{an}为等差数列,则

2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

3、在△ABC中,已知三边 a、b、c 成等差数列,且最大角∠A是最小角的2倍, a: b :c.  

答 案:

4、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。

答 案:(I)由题意,该抛物线的焦点到准线的距离为 所以抛物线C的方程为y2=2x. (Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2, 可得 m=因此A点坐标为 设B点坐标为

填空题

1、从某班的一次数学测试卷中任意抽出10份,其得分情况如下:81,98,43,75,60,55,78,84,90,70,则这次测验成绩的样本方差是()  

答 案:252.84

解 析: =252.84  

2、设

答 案:-1

解 析:  

更多推荐
微信扫码添加老师微信
2024/10/19~2024/10/20
6 0
更多
准考证
2024年10月14日~10月20日
考试
2024年10月19日~10月20日
成绩查询
2024年11月25日~12月31日
入学
第二年3月