单选题
1、若则()
答 案:B
解 析:首先做出单位圆,然后根据问题的约束条件,利用三角函数线找出满足条件的a角取值范围
2、已知全集U=R,A={x|x≥1},B={x|-1
答 案:A
解 析:补集运算应明确知道是否包括端点.A在U中的补集是x<1,
3、若向量a=(1,-1),b=(1,x),且|a+b|=2,则x=()。
答 案:C
解 析:解得x=1 本题主要考查的知识点为向量的加法和模。
4、若x<y<0,则()。
答 案:D.
解 析:本题主要考查的知识点为不等式的性质. 因为x<y<0,故
主观题
1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此
2、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量和关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得当时,f'(x)
4、已知数列的前n项和 求证:是等差数列,并求公差和首项。
答 案:
填空题
1、函数的图像与坐标轴的交点共有()
答 案:2
解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有故函数与x轴交于(1,0) 点,因此函数 与坐标轴的交点共有 2个.
2、的展开式是()
答 案:
解 析: