单选题
1、函数y=2sinxcosx的最小正周期是()
答 案:D
解 析:y=2sinxcosx=sin2x,故其最小正周期
2、函数的定义域是()
答 案:D
解 析:由题可知x2-4x+3≥0,解得x≥3或x≤1,故函数的定义域为{x|x≤1或x≥3}.
3、设α是三角形的一个内角,若,则sinα=()
答 案:D
解 析:由题知0<α<兀,而,故,因此.
4、设集合M={x||x-2||<2},N={0,1,2,3,4},则M∩N=()
答 案:C
解 析:解得M={x||x-2||<2}={x|-2<x-2<2}={x|0<x<4},故M∩N={1,2,3}.
主观题
1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由得设A(x1,y1).B(x2,y2),则因此
2、每亩地种果树20棵时,每棵果树收入90元,如果每亩增种一棵,每棵果树收入就下降3元,求使总收入最大的种植棵数.
答 案:设每亩增种x棵,总收入味y元,则每亩种树(20+x)棵,由题意知增种x棵后每棵收入为(60-3x) 则有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 当x=5时,y有最大值,所以每亩地最多种25棵
3、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.
答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积
4、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值
答 案:(Ⅰ)当n=1时,由得 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:
填空题
1、函数y=的定义域是()
答 案:[1,+∞)
解 析:要是函数y=有意义,需使 所以函数的定义域为{x|x≥1}=[1,+∞)
2、函数y=-x²+ax图像的对称轴为x=2,则a=______。
答 案:4
解 析:本题主要考查的知识点为二次函数的性质。 由题意,该函数图像的对称轴为得a=4。