2024年成考高起点《数学(文史)》每日一练试题08月03日
考试问答
2024-08-03 12:11:27
收藏

单选题

1、从15名学生中选出两人担任正、副班长,不同的选举结果共有()  

  • A:30种
  • B:90种
  • C:210种
  • D:225种

答 案:C

解 析:由已知条件可知本题属于排列问题,

2、设集合 ()。

  • A:{1}
  • B:{-1}
  • C:{—1,1)
  • D:

答 案:A

解 析:本题主要考查的知识点为集合的运算。 由题意M={-1,1},N={1},所以M∩N=(1}。  

3、已知直线l:3x一2y-5=0,圆C:,则C上到l的距离为1的点共有()

  • A:1个
  • B:2个
  • C:3个
  • D:4个

答 案:D

解 析:由题可知圆的圆心为(1.-1),半径为2,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.

4、函数f(x)=在区间[1,4]上的最大值和最小值分别是()

  • A:2和-2
  • B:2,没有最小值
  • C:1和1
  • D:2和4

答 案:A

解 析:f(x)=  

主观题

1、已知等差数列{an}中,a1+a3+a5=6,a2+a4+a6=12,求{an}的首项与公差.  

答 案:因为{an}为等差数列,则

2、设椭圆的中心是坐标原点,长轴在x轴上,离心率已知点P到圆上的点的最远距离是求椭圆的方程  

答 案:由题意,设椭圆方程为 设P点到椭圆上任一点的距离为 d, 则在y=-b时,最大,即d也最大。  

3、已知函数f(x)=(x-4)(x2-a)。(I)求f’(x);
(Ⅱ)若f’(-1)=8,求f(x)在区间[0,4]的最大值与最小值。

答 案:(I)f'(x) =(x-4)'(x2-a)+(x-4)(x2-a)’ =x2-a+2x(x-4) =3x2-8x-a. (Ⅱ)由于f’(-1)=3+8-a=8,得a=3. 令f'(x)=3x2-8x-3=0,解得x1=3,(舍去)又f(0)=12,f(3)=-6,f(4)=0所以在区间[0,4]上函数最大值为12,最小值为-6

4、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.

答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积

填空题

1、任选一个不大于20的正整数,它恰好是3的整数倍的概率是()  

答 案:

解 析:设n为不大于20的正整数的个数,则n=20,m为在这20个数中3的倍数:3,6、9、12、15、18的个数。 ∴m=6,∴所求概率=  

2、()

答 案:3

解 析:

更多推荐
微信扫码添加老师微信
2025/10/19~2025/10/20
2 7 7
更多
准考证
2025年10月14日~10月20日
考试
2025年10月19日~10月20日
成绩查询
2025年11月20日~12月31日
入学
第二年3月