2024年成考高起点《数学(理)》每日一练试题08月07日
考试问答
2024-08-07 11:59:01
收藏

单选题

1、若tanα=3,则

  • A:-2
  • B:
  • C:2
  • D:-4

答 案:A

解 析:

2、已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若,则m=()

  • A:-2
  • B:-1
  • C:0
  • D:1

答 案:C

解 析:由题可知向量a=(2,3,m),故,解得m=0.

3、在△ABC中,若lgsinA-lgsinB-lgcos=lg2,则△ABC是()

  • A:以A为直角的三角形
  • B:b=c的等腰三角形
  • C:等边三角形
  • D:钝角三角形

答 案:B

解 析:判断三角形的形状,条件是用一个对数等式给出先将对数式利用对数的运算法则整理。 ∵lgsinA-lgsinB-lgcos=lg2,由对数运算法则可得,左 两个对数底数相等则真数相等:即2sinBcosC=sinA 在△ABC中,∵A+B+C=180°,∴A=180°-(B+C), 故为等腰三角形

4、设α是第三象限角,若,则sinα=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由于,而α为第三象限角,故

主观题

1、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.

答 案:由△ABC的面积为所以AB =4.因此所以

2、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?  

答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函数当a<0时有最大值 是开口向下的抛物线,有最大值 法二:用导数来求解 因为x=90是函数在定义域内唯一驻点 所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294  

3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

4、已知函数f(x)=(x-4)(x2-a) (I)求f"(x); (Ⅱ)若f"(-1)=8,求f(x)在区间[0,4]的最大值与最小值

答 案:

填空题

1、的展开式是()

答 案:

解 析:

2、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。

答 案:

解 析:本题主要考查的知识点为圆的切线. 设切点(x0,y0)则有所以故切点横坐标为  

更多推荐
微信扫码添加老师微信
2024/10/19~2024/10/20
5 8
更多
准考证
2024年10月14日~10月20日
考试
2024年10月19日~10月20日
成绩查询
2024年11月25日~12月31日
入学
第二年3月