2024年成考高起点《数学(理)》每日一练试题09月04日
考试问答
2024-09-04 11:47:01
收藏

单选题

1、已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若,则m=()

  • A:-2
  • B:-1
  • C:0
  • D:1

答 案:C

解 析:由题可知向量a=(2,3,m),故,解得m=0.

2、在△ABC中,已知a=,b=,c=,则()。

  • A:∠A<∠B<∠C
  • B:∠A>∠B>∠C
  • C:∠A<∠C<∠B
  • D:∠A>∠C>∠B

答 案:C

解 析:由已知a=,b=,c=可知a

3、设α是第一象限角,则sin2α=()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:本题主要考查的知识点为三角函数的二倍角公式。 α在第一象限,则

4、函数f(x)=x3-6x2+9x-3的单调区间为()。

  • A:(-∞,-3)、(-3,1)、(1,+∞)
  • B:(-∞,-1)、(-1,3)、(3,+∞)
  • C:(-∞,1)、(1,3)、(3,+∞)
  • D:(-∞,-3)、(-3,-1)、(-1,+∞)

答 案:C

解 析:y=x3-6x2+9x-3则y’=3x2+12x+9 令y’=0,x2-4x+3=0(x-1)(x-3)=0解得,x1=1,x2=3 四个答案中,只有C具有1、3两个极值点,其余3个没有,故应选C。  

主观题

1、已知tan2θ=2tan2ψ+1,求cos2θ+sin2ψ的值。

答 案:由已知,得

2、某气象预报站天气预报的准确率为80%,计算(1)5次预报中恰有4次准确的概率; (2)5次中至少有次准确的概率.(计算结果保留两个有效数字).  

答 案:  把每次预报看做一次试验,“预报结果准确”看成事件P(A)=0.8,本题就相当于在5次独立重复试验中求A恰好发生4次(或至少4次)的概率,此题属于独立重复试验,由公式来求解。 (1)n=5;p=0.8;k=4 即恰有4次准确的概率为0.41. (2)5次至少有4次准确的概率,就是5次中恰有4次准确的概率与5次预报中都准确的概率的和,即 即至少有4次准确的概率为0.74。  

3、设分别讨论x→0及x→1时f(x)的极限是否存在?

答 案:∴f(x)在x=0处极限不存在 同理f(x)在x=1处极限存在

4、(1)已知tanα=,求cot2α的值; (2)已知tan2α=1,求tanα的值。

答 案:(1)(2)由已知,得 解关于tanα的一元二次方程,得tanα=  

填空题

1、在△ABC中,a=2,b=,∠B=,则∠A=______。

答 案:

解 析:

2、化简sin(x+y)-2cosxsiny=______.  

答 案:sin(x-y)

解 析:原式=sinxcosy+cosxsiny-2cosxsiny=sinxcosy-cosxsiny=sin(x-y)

更多推荐
微信扫码添加老师微信
2025/10/19~2025/10/20
2 8 3
更多
准考证
2025年10月14日~10月20日
考试
2025年10月19日~10月20日
成绩查询
2025年11月20日~12月31日
入学
第二年3月