2024年成考高起点《数学(文史)》每日一练试题09月19日
考试问答
2024-09-19 12:14:09
收藏

单选题

1、从13名学生中选出2人担任正副班长,不同的选举结果共有()。

  • A:26
  • B:78
  • C:156
  • D:169

答 案:C

2、一批产品共有5件,其中4件为正品,1件为次品,从中一次取出2件均为正品的概率为()。

  • A:0.6
  • B:0.5
  • C:0.4
  • D:0.3

答 案:A

解 析:本题主要考查的知识点为随机事件的概率。 一次取出2件均为正品的概率为

3、已知M为椭圆上的一点,F1,F2是椭圆的两个焦点,且∠F1MF2=60°,则△F1MF2的面积为()

  • A:
  • B:3
  • C:
  • D:

答 案:A

解 析:由椭圆方程 知,长轴长2a=10,焦距2c=8,设|MF1|=t,由余弦定理82=t2+(10-t)2-2t(10-t)cos60°,得

4、下列函数中,为奇函数的是()。

  • A:y=log3x
  • B:y=3x
  • C:y=3x2
  • D:y=3sinx

答 案:D

主观题

1、设椭圆的中心是坐标原点,长轴在x轴上,离心率已知点P到圆上的点的最远距离是求椭圆的方程  

答 案:由题意,设椭圆方程为 设P点到椭圆上任一点的距离为 d, 则在y=-b时,最大,即d也最大。  

2、教室里有50人在开会,其中学生35人,家长12人,老师3人,现校长在门外听到有人在发言,那么发言人是老师或学生的概率为多少?  

答 案:此题属于互斥事件,发言人是老师的概率为,是学生的概率为,故所求概率为。

3、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)  

答 案:如图  

4、设函数 (1)求;(2)求函数f(θ)最小值。

答 案:

填空题

1、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。

答 案:

解 析:本题主要考查的知识点为圆的切线. 设切点(x0,y0)则有所以故切点横坐标为  

2、为了考察某种小麦的长势,从中抽取10株苗,测得苗高如下(单位:cm):12,13,14,15,10,16,13,11,15,11. 则该品种的小麦苗高的样本方差为__________cm2.

答 案:3.6

解 析:由题中条件可得 【考点指要】本题主要考查样本的平均值和方差的计算,考生只需熟记样本平均数和方差的公式即可.

更多推荐
微信扫码添加老师微信
2024/10/19~2024/10/20
2 9
更多
准考证
2024年10月14日~10月20日
考试
2024年10月19日~10月20日
成绩查询
2024年11月25日~12月31日
入学
第二年3月