判断题

若原问题有可行解,则其对偶问题有可行解。

查看答案
该试题由用户589****80提供 查看答案人数:39765 如遇到问题请 联系客服
正确答案
该试题由用户589****80提供 查看答案人数:39766 如遇到问题请联系客服

相关试题

换一换
热门试题
如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解。() 如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解 是原问题的可行解,Y是对偶问题的可行解 如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解 当线性规划的原问题存在可行解时,则其对偶问题也一定存在可行解。() 原问题具有无界解,则对偶问题不可行( ) 中国大学MOOC: 原问题与对偶问题都有可行解,则都有最优解。 如果线性规划的对偶问题无可行解,其原问题也一定无可行解 若原问题和对偶问题都有可行解,则它们都有最优解,且它们的最优解的目标函数值相等。() 若原问题有最优解,则其对偶问题也一定有最优解。 对偶单纯形法中,若满足,则原问题没有可行解 对偶问题不可行,原问题无界解。() 中国大学MOOC: 如果线性规划问题的对偶问题无可行解,则原问题一定无可行解 若线性规划问题有可行解,则一定存在基本可行解。 若原问题具有无界解,则对偶问题() 若LP问题有可行解,但是可行域是无界的,那么该LP问题没有最优解。 如果原问题为无界解,则对偶问题的解是()。 一对可行的对偶问题,Max型问题的任一可行解对应的目标函数值()Min型问题的任一可行解对应的目标函数值 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优解。() 在二元线性规划问题中,如问题有可行解,则一定有最优解。()
购买搜题卡 会员须知 | 联系客服
会员须知 | 联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    微信扫码登录 账号登录 短信登录
    使用微信扫一扫登录
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位