登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
设集合A={x|-2
单选题
设集合A={x|-2
A. {2}
B. {2,3}
C. {3,4}
D. {2,3,4}
查看答案
该试题由用户712****16提供
查看答案人数:30536
如遇到问题请
联系客服
正确答案
该试题由用户712****16提供
查看答案人数:30537
如遇到问题请
联系客服
搜索
相关试题
换一换
主观题
若x→0时,[(1–ax2)1/4-1]与xsinx是等价无穷小,则a=____。
答案
单选题
设函数f(x)=2ax2-ax,且f(2)=-6,则a=()
A.-1 B.0 C.1
答案
单选题
设函数f(x)= 2ax
2
-ax,且f(2)=-6,则a=()
A.-1 B.-3/4 C.1 D.4
答案
单选题
设函数f(x)=2ax
2
-ax,且f(2)=-6,则a=()。
A.-1 B.0 C.1 D.4
答案
单选题
在同一平面直角坐标系中,函数y=ax2﹣bx与y=bx+a的图象可能是()
A. B. C.
答案
单选题
设C为圆周x2+y2=ax()
A.a2 B.2a2 C.3a2 D.4a2
答案
主观题
设曲线L1:y=1-x2(0≤x≤1)与z轴和y轴所围成的图形被曲线L2:y=ax2分成面积相等的两部分,其中a是大于0的常数,求a。
答案
主观题
设曲线L1:y=1-x2(0≤x≤1)与z轴和y轴所围成的图形被曲线L2:y=ax2分成面积相等的两部分,其中a是大于O的常数,求a.
答案
判断题
设X ~ N(m,σ2),则Y = aX + b ~ N (am + b,(as)2)()
答案
填空题
设函数z=sin(x+2y),则az/ax=()。
答案
热门试题
设集合A={1,2,3}
设(AX)=9ABCH,(DX)=8765H PUSH AX PUSH DX POP AX POP DX 上述4条指令执行后,(AX)=_(1)__H,(DX)=__(2)__H
设a<0,则当满足条件()时,函数f(x)=ax3+3ax2+8为增函数。
设集合A={1,2,3},集合B={2,3,4,5},则A∩B=()
设(SP)=100H,(AX)=0FFFFH 按顺序执行下列语句后(1)STC (2)PUSH AX (3)ADC AX,0 (4)PUSH AX (5)POP BX,(SP)等于()。
设(SP)=100H,(AX)=0FFFFH 按顺序执行下列语句后(1)STC (2)PUSH AX (3)ADC AX,0 (4)PUSH AX (5)POP BX,(BX)等于()。
设集合M={1,2,4),N={2,3,5),则集合M∪N=( )
设集合M=(x||x|<2},N=(x||x-1|>2},则集合M∩N=()
设集合M=(x||x|<2},N=(x||x-1|>2},则集合M∩N=()
设集合M={1,2,4},N={2,3,5},则集合M∪N=().
设集合M={-2,0,2},N={0},则()。
设f(x)=ax+b目f(0)=-2,f(3)=4,则f(2)=()。
设A为有限集合,则|ρ (A)|=2的|A|次方。
设集合A={1、2、3、4},B={2、3、4、5},则集合A∩B子集个数为()
设集合A={1,2},集合B={1,3},则A∪B={1,1,2,3}。
设集合M={x∣-1≤x<2},N={x∣x≤1}集合M∩N=()。
设集合A=(-3,2),B=(-2,3),则AUB=( ).
设C为圆周x2+y2=ax(a>0),则曲线积分的值是().
中国大学MOOC: 设X ~ N(m,σ2),则Y = aX + b ~ N (am + b,(as)2).
设集合A={1,2,3},B={3,4},则集合A∪B={1,2,3,4}。
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP