2023年成考高起点每日一练《数学(理)》10月30日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:586

试卷答案:有

试卷介绍: 2023年成考高起点每日一练《数学(理)》10月30日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 设集合M={x||x-2|<1},N={x|x>2},则M∩N=()

    A{x|1<x<3}

    B{x|x>2}

    C{x|2<x<3}

    D{x|1<x<2}

  • 2. ()

    A

    B

    C

    D

  • 3. 5名高中毕业生报考3所院校,每人只能报一所院校,则有()种不同的报名方法  

    A

    B

    C

    D

  • 4. 已知直线l:3x-2y-5=0,圆C:,则C上到l的距离为1的点共有()

    A1个

    B2个

    C3个

    D4个

  • 1. 已知数列的前n项和 求证:是等差数列,并求公差和首项。  
  • 2. 设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
    (II)求f(x)的极值.
  • 3. 已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
    (II)求|AB|.
  • 4. 在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  
  • 1. 椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()  
  • 2. 的展开式是()