登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
有15支篮球队参加单淘汰制比赛,需要进行的场次及轮次是()
单选题
有15支篮球队参加单淘汰制比赛,需要进行的场次及轮次是()
A. 13场4轮
B. 13场3轮
C. 14场3轮
D. 14场4轮
查看答案
该试题由用户786****39提供
查看答案人数:25169
如遇到问题请
联系客服
正确答案
该试题由用户786****39提供
查看答案人数:25170
如遇到问题请
联系客服
搜索
相关试题
换一换
单选题
有15支篮球队参加单淘汰制比赛,需要进行的场次及轮次是()
A.13场4轮 B.13场3轮 C.14场3轮 D.14场4轮
答案
单选题
有8支足球队参加单淘汰制比赛,需要进行的场次及轮次是()
A.7场3轮 B.4场3轮 C.8场3轮 D.7场2轮
答案
判断题
如八个队员参加比赛,采用单淘汰制,其比赛场次为七场。
答案
判断题
如八个队员参加比赛,采用单淘汰制,其比赛场次为七场。
A.对 B.错
答案
判断题
如八个队员参加比赛,采用单淘汰制,其比赛场次为五场()
答案
单选题
有8个篮球队参加单淘汰比赛,共有( )
A.7场 B.12场 C.8场 D.16场
答案
单选题
8个篮球队参加单淘汰比赛,共有()
A.7场 B.12场 C.8场 D.16场
答案
单选题
有8支队伍参加比赛,若采用单淘汰制,不考虑附加赛的情况,共需比赛()场。
A.5 B.13 C.7 D.15
答案
单选题
有8个篮球队参加单淘汰赛共有几场比赛()
A.5 B.6 C.7
答案
单选题
有八个篮球队参加单淘汰赛共有几场比赛()
A.8 B.7 C.6 D.5
答案
热门试题
8个篮球队参加比赛……共进行( )场比赛
有五支篮球队参加比赛,若采用单循环赛制,则共有()场比赛。
有五支篮球队参加比赛,若采用单循环赛制,则共有( )场比赛。
篮球比赛中有7支球队参加单循环比赛,比赛场次共有多少场( )
在8个篮球队参加的比赛中,若采用淘汰赛制共需比赛()场就可决出冠军
淘汰制比赛场次计算公式为________________________________________
有五支篮球队参加比赛,若采用单循环赛制,则比赛次数一共是()
简述单淘汰制的优缺点
简述单淘汰制的优缺点
教学设计题:请认真阅读下述材料,并按要求作答。问题:16支足球队参加比赛,比赛以单场淘汰制(即每场比赛淘汰1支球队)进行,请问一共要进行多少场比赛才能产生一支冠军队?解法1:按照比赛进程,第一轮16支球队进行8场比赛,淘汰8支球队;第二轮,首轮晋级的8支球队进行4场比赛,淘汰4支球队;第三轮,再次晋级的4支球队进行2场比赛,淘汰2支球队;第四轮,2支球队进行决赛,产生1支冠军队。所以,一共要进行1
在有13个足球队参加的比赛中。若采用淘汰制共需()场就可决出冠军
某篮球比赛有12支球队报名参加,比赛的第一阶段中,12支球队平均分成2个组进行单循环比赛,每组前4名进入第二阶段;第二阶段采用单场淘汰赛,直至决出冠军。问亚军参加的场次占整个赛事总场次的比重为:
6支篮球队,如果每2队之间都要进行一场比赛,一共要比赛()场
7支队参加篮球赛,比赛场次有多少。()
台湾有哪支篮球队参加2001年度的大陆甲A联赛
台湾有哪支篮球队参加2001年度的大陆甲A联赛
公司举办第一届羽毛球赛,共有32名选手报名单人赛,采用输一场即被淘汰的单淘汰制。共需安排比赛的场次是( )。
教学设计题: 请认真阅读下述材料,并按要求作答。 问题:16支足球队参加比赛,比赛以单场淘汰制(即每场比赛淘汰1支球队)进行,请问一共要进行多少场比赛才能产生一支冠军队? 解法1:按照比赛进程,第一轮16支球队进行8场比赛,淘汰8支球队;第二轮,首轮晋级的8支球队进行4场比赛,淘汰4支球队;第三轮,再次晋级的4支球队进行2场比赛,淘汰2支球队;第四轮,2支球队进行决赛,产生1支冠军队。所以,一共要进行15(8+4+2+1)场比赛,才能产生1支冠军队 解法2:匈牙利数学家路莎·佩特曾说:"数学家往往不是对问题进行正面的攻击,而是不断地将它变形,甚至把它转化为已经得到解决的问题。"据此,由16支球队产生1支冠军队就要淘汰15支球队,每淘汰1支球队就要进行1场比赛。所以,一共要进行15(16-1)场比赛,才能产生1支冠军队。 上述两种解法的思维路向是什么?
教学设计题: 请认真阅读下述材料,并按要求作答。 问题:16支足球队参加比赛,比赛以单场淘汰制(即每场比赛淘汰1支球队)进行,请问一共要进行多少场比赛才能产生一支冠军队? 解法1:按照比赛进程,第一轮16支球队进行8场比赛,淘汰8支球队;第二轮,首轮晋级的8支球队进行4场比赛,淘汰4支球队;第三轮,再次晋级的4支球队进行2场比赛,淘汰2支球队;第四轮,2支球队进行决赛,产生1支冠军队。所以,一共要进行15(8+4+2+1)场比赛,才能产生1支冠军队 解法2:匈牙利数学家路莎·佩特曾说:"数学家往往不是对问题进行正面的攻击,而是不断地将它变形,甚至把它转化为已经得到解决的问题。"据此,由16支球队产生1支冠军队就要淘汰15支球队,每淘汰1支球队就要进行1场比赛。所以,一共要进行15(16-1)场比赛,才能产生1支冠军队。 第二种解法所反映的数学思想方法是什么?
教学设计题:请认真阅读下述材料,并按要求作答。问题:16支足球队参加比赛,比赛以单场淘汰制(即每场比赛淘汰1支球队)进行,请问一共要进行多少场比赛才能产生一支冠军队?解法1:按照比赛进程,第一轮16支球队进行8场比赛,淘汰8支球队;第二轮,首轮晋级的8支球队进行4场比赛,淘汰4支球队;第三轮,再次晋级的4支球队进行2场比赛,淘汰2支球队;第四轮,2支球队进行决赛,产生1支冠军队。所以,一共要进行15(8+4+2+1)场比赛,才能产生1支冠军队解法2:匈牙利数学家路莎·佩特曾说:"数学家往往不是对问题进行正面的攻击,而是不断地将它变形,甚至把它转化为已经得到解决的问题。"据此,由16支球队产生1支冠军队就要淘汰15支球队,每淘汰1支球队就要进行1场比赛。所以,一共要进行15(16-1)场比赛,才能产生1支冠军队。依据拟定的教学目标,设计课堂教学的导入环节并简要说明理由。
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP