登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
求解矩阵A的特征值和特征向量的R命令是()
单选题
求解矩阵A的特征值和特征向量的R命令是()
A. eigen(A,symmetric=T)
B. solve(A)
C. svd(A)
D. qr()
查看答案
该试题由用户158****73提供
查看答案人数:2792
如遇到问题请
联系客服
正确答案
该试题由用户158****73提供
查看答案人数:2793
如遇到问题请
联系客服
搜索
相关试题
换一换
单选题
求解矩阵A的特征值和特征向量的R命令是()
A.eigen(A,symmetric=T) B.solve(A) C.svd(A) D.qr()
答案
单选题
设A是3阶矩阵,是A的属于特征值1的特征向量,是A的属于特征值-1的特征向量,则()
A.是A的属于特征值1的特征向量 B.是A的属于特征值1的特征向量 C.是A的属于特征值2的特征向量 D.是A的属于特征值1的特征向量
答案
主观题
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ^2是λ^3的特征值,X为特征向量,若A^2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
答案
主观题
下列命题错误的是: 属于不同特征值的特征向量线性无关|属于同一特征值的特征向量线性相关|特征值相同的矩阵不一定相似|相似矩阵必有相同的特征值
答案
主观题
【 】可用来计算矩阵的按模最大的特征值和特征向量
答案
单选题
设A是3阶实对称矩阵,Р是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值入的特征向量,则B的属于特征值A的特征向量是()
A.Pa B.P-1a C.PTa D.(P-1)Ta
答案
单选题
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:
A.Pa B.P-1A C.PTa D.(P-1)Ta
答案
单选题
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:
A.Pa B.P-1 C.PTa D.(P-1)Ta
答案
单选题
(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()
A.Pα B.P-1α C.PTα D.(P-1)Tα
答案
单选题
(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()
A.Pα B.P-1α C.PTα D.(P-1)Tα
答案
热门试题
幂法是用来求矩阵(?? )特征值及特征向量的迭代法。
已知二阶实对称矩阵A的特征值是1 , A的对应于特征值1的特征向量为(1, - 1 ) T,若|A|= . -1,则A的另-一个特征值及其对应的特征向量是( )。
乘幂法主要是用来求矩阵的主特征值(按模最大的特征值)及相应的特征向量。()
(1)若α1,α2,…,αr是A的属于特征值λ的特征向量,则α1,α2,…,αr的任一个非零线性组合也是A的属于λ的特征向量.(2)矩阵可逆的充分必要条件是它的特征值都不为0.
证明: (1)若α(→)1,α(→)2,…,α(→)r是A的属于特征值λ的特征向量,则α(→)1,α(→)2,…,α(→)r的任一个非零线性组合也是A的属于λ的特征向量。 (2)矩阵可逆的充分必要条件是它的特征值都不为0。
设A为n阶方阵,α为A的对应于特征值λ的特征向量,β为AT的对应于特征值μ的特征向量,且λ ≠ μ,证明α与β正交
设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()
设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()
设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则( )
设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()
设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是( )。
设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。
应用层次分析法解决方案评价问题的主要困难在于矩阵特征值和特征向量的计算。
设M为3×3实数矩阵,a为M的实特征值λ的特征向量,则下列叙述正确的是( )。
幂法的基本思想是构造一个向量序列使之逼近主特征值对应特征向量,然后求出主特征值。那么,主特征值是( )
设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于()
已知是对称矩阵A的三个特征值为λ1=2,λ2=λ3=4,且对应于λ2,λ3的特征向量为ξ2=(1,1,-1)T,ξ3=(2,3,-3)T.(1)求A的属于特征值λ1=2的特征向量;(2)求矩阵A.
设3阶实对称矩阵A的特征值为-1,1,1,与特征值-1对应的特征向量x=(-1,1,1)′,求A
中国大学MOOC: 实对称矩阵A的不同特征值对应的特征向量不仅是线性无关的而且是
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP