主观题

设向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s;(Ⅱ)β(→)1,β(→)2,…,β(→)t;(Ⅲ)α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t的秩依次为r1,r2,r3。证明:max(r1,r2)≤r3≤r1+r2。

查看答案
该试题由用户372****71提供 查看答案人数:18251 如遇到问题请 联系客服
正确答案
该试题由用户372****71提供 查看答案人数:18252 如遇到问题请联系客服

相关试题

换一换
主观题
设向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s;(Ⅱ)β(→)1,β(→)2,…,β(→)t;(Ⅲ)α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t的秩依次为r1,r2,r3。证明:max(r1,r2)≤r3≤r1+r2。
答案
单选题
设α1,α2,…,αs和β1,β2,…,βt为两个n维向量组,且秩(α1,α2,…,αs)=秩(β1,β2,…,βt)=r,则(  ).
A.此两个向量组等价 B.秩(α1,α2,…,αs,β1,β2,…,βt)=r C.当α1,α2,…,αs可以由β1,β2,…,βt线性表示时,此二向量组等价 D.s=t时,二向量组等价
答案
单选题
设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…, α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的(  )。
A.充分非必要条件 B.必要非充分条件 C.充分必要条件 D.既非充分也非必要条件
答案
单选题
设向量组α(→)1,α(→)2,…,α(→)s的秩为r,则(  )。
A.必定r<s B.向量组中任意个数小于r的部分组线性无关 C.向量组中任意r个向量线性无关 D.若s>r,则向量组中任意r+l个向量必线性相关
答案
单选题
设向量组α1,α2,…,αs的秩为r,则(  ).
A.必定r<s B.向量组中任意个数小于r的部分组线性无关 C.向量组中任意r个向量线性无关 D.若s>r则向量组中任r+l个向量必线性相关
答案
单选题
设向量组(I)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i=1,2,…,s)均可以由α1,…,αs线性表示,则(  ).
A.向量组α1+β1,α2+β2,…,αs+βs的秩为r1+r2 B.向量组α1-β1,α2-β2,…,αs-βs秩为rl-r2 C.向量组α1,α2,…,αs,β1,β2,…,βs的秩为rl+r2 D.向量组α1,α2,…,αs,β1,β2,…,βs的秩为rl
答案
单选题
设向量组(Ⅰ):α(→)1,α(→)2,…,α(→)r可由向量组(Ⅱ):β(→)1,β(→)2,…,β(→)s线性表示,则(  )。
A.r<s时,向量组(Ⅱ)必线性相关 B.r>s时,向量组(Ⅱ)必线性相关 C.r<s时,向量组(Ⅰ)必线性相关 D.r>s时,向量组(Ⅰ)必线性相关
答案
单选题
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则()
B.当ru003es时,向量组Ⅱ必线性相关 D.当ru003es时,向量组Ⅰ必线性相关
答案
单选题
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则
A.当rs时,向量组Ⅱ必线性相关 C.当rs时,向量组Ⅰ必线性相关
答案
单选题
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则()
B.当r>s时,向量组Ⅱ必线性相关 D.当r>s时,向量组Ⅰ必线性相关
答案
热门试题
设向量组(Ⅰ)α1,α2,…αr,可由向量组(Ⅱ)β1,β2,…βs线性表示,则(  )。 设向量组α1,α2,…,αr(Ⅰ)是向量组α1,α2,…,αs(Ⅱ)的部分线性无关组,则(  ). 正常胸椎后凸:TK(T4-T12)/LL(T12-S1)=() 设η(→)1,η(→)2,η(→)3,η(→)4是五元非齐次线性方程组AX(→)=b(→)的四个解,且秩r(A)=3,又设:η(→)1+η(→)2+η(→)3+η(→)4=(4,-8,-12,12,16)T,η(→)1+2η(→)2+2η(→)3+η(→)4=(6,18,-18,-30,12)T,2η(→)1+2η(→)2+η(→)3+η(→)4=(18,-30,-36,30,36)T,求方程组AX(→) 设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,下列命题正确的是(  )。 设α,β为三维列向量,矩阵A=αα^T+ββ^T,其中α^T,β^T分别是α,β的转置.证明:
  (Ⅰ)秩r(A)≤2;
  (Ⅱ)若α,β线性相关,则秩r(A)<2.
设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。 设向量组的秩为r,则 设向量组A:α1=(t,1,1),α2=(1,t,1),α3=(1,1,t)的秩为2,则t等于() 设向量组(Ⅰ):α1=(a11,a21,a31)T,α2=(a12,a22,a32)T,α3=(a13,a23,a33)T,向量组(Ⅱ):β1=(a11,a21,a31,a41)T,β2=(a12,a22,a32,a42)T,β3=(a13,a23,a33,a43)T,则(  ). 设有向量组α1,α2,…,αr(r>1).β1=α2+α3+…+αr,β2=α1+α3+…+αr,…,βr=α1+α2+…+αr-1,证明:向量组α1,α2,…,αr与β1,β2,…,βr的秩相等。 (33)设关系 R 和S 的元数分别是r 和 s,则集合{t | t = < t r,t s>S }标记的是 对于模型yt=b0+b1x1t+b2x2t+ut,与r12=0相比,r12=0.5时,估计量的方差将是原来的()。 对于模型yt=b0+b1x1t+b2x2t+ut,与r12=0相比,r12=0.5时,估计量的方差将是原来的 设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t(  )。 设n维向量组(Ⅰ)α1,α2,…,αs线性无关,(Ⅱ)β1,β2,…,βt线性无关,且αi不能由(Ⅱ)线性表示(i=1,2,…,s),βj且不能由(I)线性表示(j=1,2,…,t),则向量组α1,α2,…,αs,β1,β2,…,βt(  ). 设向量组A:a1=(t,1,1),a2=(1,t,1),a3=(1,1,t)的秩为2,则t等于() 设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下 R={ s,t 〡s,t P(A)∧(∣s∣=∣t∣} 则P(A)/R=( )/ananas/latex/p/1242 设关系R和S的元数分别是r和s,则集合{t|t=t,ts>∧tr∈R∧ts∈S}标记的是() 设向量组α1=(1,0,1)T,α2=(0,1,1)T,a3=(1,3,5)T,不能由向量组β1,=(1,1,1)T,f12=(1,2,3)T,3β=(3,4,α)T线性表示。(1)求a的值;(2)将β1β2β2由α1α2α3线性表示。
购买搜题卡 会员须知 | 联系客服
会员须知 | 联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    微信扫码登录 账号登录 短信登录
    使用微信扫一扫登录
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位