单选题

设λ1,λ2是矩阵A的两个不同的特征值,ξ、η是a的分别属于λ1、λ2的特征向量,则以下选项正确的是()。

A. 对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量
B. 存在常数k1≠0和k2≠0,使得k1ξ+k2η是A的特征向量
C. 对任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量
D. 仅当k1=k2=0时,k1ξ+k2η是A的特征向量

查看答案
该试题由用户789****78提供 查看答案人数:31004 如遇到问题请 联系客服
正确答案
该试题由用户789****78提供 查看答案人数:31005 如遇到问题请联系客服

相关试题

换一换
单选题
设λ1,λ2是矩阵A的两个不同特征值,a,β分别为A对应于λ1,λ2的特征向量,则a,β()
A.线性相关 B.线性无关 C.正交 D.平行
答案
单选题
设λ1,λ2是矩阵A的两个不同的特征值,ξ、η是a的分别属于λ1、λ2的特征向量,则以下选项正确的是()。
A.对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量 B.存在常数k1≠0和k2≠0,使得k1ξ+k2η是A的特征向量 C.对任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量 D.仅当k1=k2=0时,k1ξ+k2η是A的特征向量
答案
单选题
设λ1,λ2是矩阵A的两个不同的特征值,ξ、η是a的分别属于λ1、λ2的特征向量,则以下选项正确的是()
A.对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量 B.存在常数k1≠0和k2≠0,使得k1ξ+k2η是A的特征向量 C.对任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量 D.仅当k1=k2=0时,k1ξ+k2η是A的特征向量
答案
单选题
设λ1,λ2是矩阵A的两个不同的特征值,α,β分别为A对应于λ1,λ2的特征向量,则α,β()。 
A.线性相关 B.线性无关 C.正交 D.平行
答案
单选题
是矩阵A的两个不同的特征值,ξ,η是A的分别属于的特征向量,则以下选项中正确的是()
A.对任意的都是A的特征向量 B.存在常数是A的特征向量 C.对任意的都不是A的特征向量 D.仅当是A的特征向量
答案
单选题
设λ1,λ2是矩阵A的两个不同的特征值,a,β分别为A对应于λ1,λ2的特征向量,则a,β()。
A.线性相关 B.线性无关 C.正交 D.平行
答案
单选题
设λ1,λ2是矩阵A的2个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是:()
A.对任意的k1≠0和k2≠0,k1ξ+k2η,都是A的特征向量 B.存在常数k1≠0和k2≠0,使得k1ξ+k2η,是A的特征向量 C.存在任意的k1≠0和k2≠0,k1ξ+k2η,都不是A的特征向量 D.仅当k1=k2=0时,k1ξ+k2η,是A的特征向量
答案
单选题
设λ1,λ2是矩阵A的2个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是:()
A.对任意的k1≠0和k2≠0,k1ξ k2η,都是A的特征向量 B.存在常数k1≠0和k2≠0,使得k1ξ k2η,是A的特征向量 C.存在任意的k1≠0和k2≠0,k1ξ k2η,都不是A的特征向量 D.仅当k1=k2=0时,k1ξ k2η,是A的特征向量
答案
单选题
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是()。
A.λ1≠0 B.λ2≠0 C.λ1=0 D.λ2=0
答案
主观题
设2阶矩阵A有两个不同特征值,α1,α2是A的线性无关的特征向量,且满足A^2(α1+α2)=α1+α2,则|A|=________.
答案
热门试题
设A是3阶矩阵,是A的属于特征值1的特征向量,是A的属于特征值-1的特征向量,则() 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2,则a1,A(a1+a2)线性无关的充分必要条件是( )。 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2,则a1,A(a1+a2)线性无关的充分必要条件是( )。 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2,则a1,A(a1+a2)线性无关的充分必要条件是( )。 设λ=2 是非奇异矩阵A的一个特征值,则矩阵有一个特征值等于/ananas/latex/p/2060934 阶矩阵 A 具有 n 个不同的特征值是 A 与对角矩阵相似的( )。 系数矩阵有3个不同的特征值。() 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是: 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是: 设A是3阶实对称矩阵,Р是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值入的特征向量,则B的属于特征值A的特征向量是() 下列命题错误的是: 属于不同特征值的特征向量线性无关|属于同一特征值的特征向量线性相关|特征值相同的矩阵不一定相似|相似矩阵必有相同的特征值 (2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:() (2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:() 已知n阶可逆矩阵A的特征值为λo,则矩阵的特征值是() 设3阶方阵A有特征值2,且已知|A|=5,则A的伴随矩阵必有特征值(). 设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是() 设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是( )。 设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。 设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A. 设A是3阶矩阵,λ=2,4,6是A的3个特征值,求行列式|A-3E|=____
购买搜题卡 会员须知 | 联系客服
会员须知 | 联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    微信扫码登录 账号登录 短信登录
    使用微信扫一扫登录
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位