判断题

系数矩阵有3个不同的特征值。()

查看答案
该试题由用户370****79提供 查看答案人数:38129 如遇到问题请 联系客服
正确答案
该试题由用户370****79提供 查看答案人数:38130 如遇到问题请联系客服

相关试题

换一换
热门试题
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是: 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是: 设A是3阶实对称矩阵,Р是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值入的特征向量,则B的属于特征值A的特征向量是() 设矩阵A的特征为1,2,3,那么A -1 的特征值为 . 已知A是n阶可逆矩阵,那么与A有相同特征值的矩阵是(  )。 对称矩阵的特征值为什么 设4阶矩阵A 的每行元素之和均为3,则A 必有一个特征值为(  )。 (2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:() (2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:() 正规矩阵的条件数等于其最大特征值与最小特征值的商 设A是3阶矩阵,λ=2,4,6是A的3个特征值,求行列式|A-3E|=____ 已知实对称矩阵A的三个特征值为λ1=2,λ2=λ3=4,且对应于λ2,λ3的特征向量为ξ(→)2=(1,1,-1)T,ξ(→)3=(2,3,-3)T。  (1)求A的属于特征值λ1=2的特征向量;  (2)求矩阵A。 已知是对称矩阵A的三个特征值为λ1=2,λ2=λ3=4,且对应于λ2,λ3的特征向量为ξ2=(1,1,-1)T,ξ3=(2,3,-3)T.(1)求A的属于特征值λ1=2的特征向量;(2)求矩阵A. 相似矩阵必有相同的特征值. ( ) 已知三阶矩阵A的特征值为2,3,4,则∣A∣= 设3阶矩阵A=[α1,α2,α3]有3个不同的特征值,且a3=a1+2a2.  (Ⅰ)证明r(A)=2;  (Ⅱ)若β=α1,α2,α3,求方程组Ax=β的通解. 设λ1,λ2是矩阵A的两个不同特征值,a,β分别为A对应于λ1,λ2的特征向量,则a,β() 若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则( ) 设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。(Ⅰ)证明r(A)=2;(Ⅱ)若β=α1+α2+α3,求方程组Ax=β的通解。 设λ1,λ2是矩阵A的两个不同的特征值,α,β分别为A对应于λ1,λ2的特征向量,则α,β()。 
购买搜题卡 会员须知 | 联系客服
会员须知 | 联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    微信扫码登录 账号登录 短信登录
    使用微信扫一扫登录
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位