写作题

针对一元二次方程概念与解法的一节复习课,教学目标如下:①进一步了解一元二次方程的概念;
②进一步理解一元二次方程的多种解法(配方法、公式法、因式分解法等);
③会运用判别式判断一元二次方程根的情况:
④通过对相关问题的讨论,在理解相关知识的同时,体会数学思想方法,积累数学活动经验。
问题:
根据上述教学目标,完成下列任务:
(1)为了落实上述教学目标①、②,请设计一个教学片段,并说明设计意图;
(2)配方法是解一元二次方程的通性通法,请设计问题串,以帮助学生进一步理解配方法在解一元二次方程中的作用。

查看答案
该试题由用户491****71提供 查看答案人数:19212 如遇到问题请 联系客服
正确答案
该试题由用户491****71提供 查看答案人数:19213 如遇到问题请联系客服

相关试题

换一换
主观题
针对一元二次方程概念与解法的一节复习课,教学目标如下:① 进一步了解一元二次方程的概念;② 进一步理解一元二次方程的多种解法;③ 会运用判别式判断一元二次方程根的情况;④ 通过对相关问题的讨论,在理解相关知识的同时,体会数学思想方法,积累数学活动经验。问题:根据上述教学目标,完成下列任务:(1)为了落实上述教学目标①②,请设计一个教学片段,并说明设计意图;(2)配方法是解一元二次方程的通性通法,请
答案
多选题
一元二次方程为初中阶段重要的方程形式,一元二次方程的解法多样,下列属于一元二次方程解法的有()
A.配方法 B.公式法 C.因式分解法 D.代入消元法
答案
主观题
针对一元二次方程概念与解法的一节复习课,教学目标如下:<br>① 进一步了解一元二次方程的概念;<br>② 进一步理解一元二次方程的多种解法(配方法、公式法、因式分解法等);<br>③ 会运用判别式判断一元二次方程根的情况;<br>④ 通过对相关问题的讨论,在理解相关知识的同时,体会数学思想方法,积累数学活动经验。<br>问题:<br>根据上述教学目标,完成下列任务:<br>(1)为了落实上述教学
答案
写作题
针对一元二次方程概念与解法的一节复习课,教学目标如下:①进一步了解一元二次方程的概念;②进一步理解一元二次方程的多种解法(配方法、公式法、因式分解法等);③会运用判别式判断一元二次方程根的情况:④通过对相关问题的讨论,在理解相关知识的同时,体会数学思想方法,积累数学活动经验。问题:根据上述教学目标,完成下列任务:(1)为了落实上述教学目标①、②,请设计一个教学片段,并说明设计意图;(2)配方法是解一元二次方程的通性通法,请设计问题串,以帮助学生进一步理解配方法在解一元二次方程中的作用。
答案
主观题
针对一元二次方程概念与解法的一节复习课,教学目标如下:① 进一步了解一元二次方程的概念;② 进一步理解一元二次方程的多种解法(配方法、公式法、因式分解法等);③ 会运用判别式判断一元二次方程根的情况;④ 通过对相关问题的讨论,在理解相关知识的同时,体会数学思想方法,积累数学活动经验。问题:根据上述教学目标,完成下列任务:(1)为了落实上述教学目标①②,请设计一个教学片段,并说明设计意图;(18分)(2)配方法是解一元二次方程的通性通法,请设计问题串,以帮助学生进一步理解配方法在解一元二次方程中的作用。(12分)
答案
写作题
求解一元二次方程的核心思想是降次,将一元二次方程转化为一元一次方程。《义务教育数学课程标准(2011年版)》要求:理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。 请完成下列任务: (1)请至少说出3种课标要求中解一元二次方程的方法所包含的降次过程;(2)设计公式法解一元二次方程的主要教学过程; (3)运用因式分解法计算一元二次方程比较简单,初中常用的因式分解法是十字相乘法, 请写出十字相乘法的主要步骤。  
答案
单选题
一元二次方程的实根()
A.至少一个 B.最多二个 C.没有 D.只有一个
答案
单选题
下列方程是一元二次方程的是()
A.x²-y-1=1 B.x²+2x-3=0 C.x²+ =3 D.x-5y=6
答案
单选题
一元二次方程中的“元”指的是什么?()
A.加减乘除 B.未知数
答案
单选题
一元二次方程中的“元”指的是什么()
A.未知数 B.常数
答案
热门试题
列举义务教育阶段一元二次方程的三种主要解法. 下列方程中不是一元二次方程的是 下列方程中,属于一元二次方程的是() 下列方程中,是一元二次方程的是()   下列方程中,关于x的一元二次方程是()   针对“一元二次议程”起始课的教学,两位老师给出了如下教学设计片段: 【教师甲】 设置问题:请同学们根据下列问题,只列出含未知数x的方程: (1)一个正方形的面积为2,求正方形的边长x。 (2)长度为1的线段AB有一点C,且满足AC/AB=BC/AC,求线段AC的长x。 预设:学生会分别列出两个方程。 教师要求学生分别整理成方程左侧降幂排列,右侧为零的形式,然后引导学生完成下面两件事:对比”一元一次方程“的定义,为这类议程定义一个名称——一元二次方程。再请学生自行写出几个不同的一元二次议程,并提炼出一元二次方程的一般表达式。 【教师乙】 上课开始。提问:什么是“一元一次方程”?请你根据“一元一次方程”的定义,给出“一元二次方程”的定义,并举出几个“一元二次方程”的例子。在学生举例的基础上,提炼出“一元二次方程”的一般表达式。 请完成下列任务: (1)请分析两位老师引入“一元二次方程”概念设计方案的各自的特点。 (2)在教学中,当引入一个新的数学概念之后,往往通过例题、习题加深对概念的理解。请针对“一元二次方程”概念,设计不同难度的两道例题和两道习题,以加深学生对“一元二次方程”概念的理解。 一元二次方程仅可以用代数法解决。 中国大学MOOC: 求一元二次方程的根 中国大学MOOC: 编程计算一元二次方程的根。 托马斯·卡莱尔首次利用()解出了一元二次方程。 下列一元二次方程有两不等实数根的是() 数学老师在课堂上讲解一元二次方程的时候,小毛同学提出老师讲错了一元二次方程的解题方法,这时该老师最恰当的做法是() 第一个提出一元二次方程有求根公式的人是 一元二次方程的求根公式体现了数学美中的哪个境界? 元二次方程的定 义:只含有一个未知数的整式方程,未知数的最高次数为2,可将方程式化为一般形式ax二次方+bx+c=0(a≠0)。则下列关于x的方程是一元二次方程的是() 根据代数基本定理,一个一元二次方程式通常有几个根?() 用C语言编写的求解一元二次方程的程序是系统软件。 一元二次方程2x^2-7x+8=0的一次项是() 把一元二次方程(x+2)(x-3)=4化成一般形式,得()   一元二次方程x2+x-2=0 的两根之积是( )
购买搜题卡 会员须知 | 联系客服
会员须知 | 联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    微信扫码登录 账号登录 短信登录
    使用微信扫一扫登录
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位