简答题

已知f(x)在[1,3]上连续,在(1,3)内可导,且f(1)f(2)<0,f(2)f(3)<0,证明:至少存在一点ξ∈(1,3),使得f′(ξ)-f(ξ)=0.  

查看答案
该试题由用户176****40提供 查看答案人数:28624 如遇到问题请 联系客服
正确答案
该试题由用户176****40提供 查看答案人数:28625 如遇到问题请联系客服

相关试题

换一换
简答题
已知f(x)在[1,3]上连续,在(1,3)内可导,且f(1)f(2)<0,f(2)f(3)<0,证明:至少存在一点ξ∈(1,3),使得f′(ξ)-f(ξ)=0.  
答案
论述题
设函数f(x)在[1,2]上连续,在(1,2)内可导,且f(1)=4f(2),证明:存在ξ∈(1,2),使得2f(ξ)+ξf’(ξ)=0。  
答案
论述题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明:存在ξ,η∈(a,b),使得eη-ξ[f’(η)+f(η)]=1。
答案
主观题
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1/2。证明:必∃ξ、η∈(a,b),使e2ξ=(eb+ea)[f′(η)+f(η)]eη。
答案
单选题
设函数f(x)在(0,1)上可导且在[0,1]上连续,且f'(x)>0,f(0)<0,f(1)>0,则f(x)在(0,1)内()。
A.至少有一个零点 B.有且仅有一个零点 C.没有零点 D.零点的个数不能确定
答案
主观题
设f(x)是R上的可导函数,且f(x)>0。(1)求lnf(x)的导函数;
(2)已知f,(x)-3x2f(x)=0,且f(0)=1,求f(x)。
答案
单选题
设在f(x)上连续,在[0,1]内可导,且f(0)=f(1),则:在(0,1)内曲线y=f(x)的所有切线中《》( )
A.至少有一条平行于x轴 B.至少有一条平行于y轴 C.没有一条平行于x轴 D.可能有一条平行于y轴
答案
简答题
设函数f(x)在区间[0,2]上连续,在区间(0,2)内可导,且f(0)=f(2)=f(1)=2,证明:至少存在一点ξ∈(0,2),使得f′(ξ)=ξ.  
答案
单选题
若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足()
A.必存在且只有一个 B.至少存在一个 C.不一定存在 D.不存在
答案
主观题
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3,证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ2+η2。
答案
热门试题
设f(x)在[0,2]上连续,在(0,2)内可导,且f(0)+f(1)=4,f(2)=2,试证明必存在一点ξ∈(0,2),使f′(ξ)=0.   函数f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f(0)<0,f′(x)≥k>0,则在(0,+∞)内f(x)(  )。 设f′(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f[(a+b)/2]<0,试证至少存在一个点ξ∈(a,b)使f′(ξ)=f(ξ)。 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)·f(b)>0,f(a)·f[(a+b)/2]<0。试证:对任意实数k,∃ξ∈(a,b),使得f′(ξ)=kf(ξ)。 若f(x)在[a,b]上连续,在(a,b)可导且f(a)=f(b),则() 若f(x)在[a,b]上连续,在(a,b)可导且f(a)=f(b),则(  )。 已知函数f(x)在区间[0,1]上连续,在区间(0,1)内可导,且f(0)=0,f(1)=1,证明: (1)存在一点ξ∈(0,1),使得f(ξ)=1-ξ; (2)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1.   设f(x)在[a,b]上连续(a>0),在(a,b)内可导,证明:必∃ξ∈(a,b),使[f(a)-f(ξ)]/(ξ2-b2)=f′(ξ)/(2ξ)。 设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=____。 设函数f(x)在(-∞,+∞)内n阶可导,且f′(x)=ef(x),f(2)=1,计算f(n)(2).   设f(x)是R上的可导函数,且f(x)>0。若f?(x)-3x2f(x)=0,且f(0)=1,求f(x)。 设 f(x)是 R 上的可导函数,且 f(x)>0。若 f"(x)-3x---2f(x)=0,且 f(0)=1,求 f(x)。 已知y=f(x)是R上的奇函数,且f(1)=3,f(-2)=-5,则f(-1)+f(2)=(). 设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。 若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足f ′(x0)=0的点x0(  )。 设函数f(x)和g(x)均在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=f(b)=0,证明:存在一点ξ∈(a,b),使得f’(ξ)+2f(ξ)g(ξ)g’(ξ)=0。   设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0。证明:∃ξ∈(0,1)使(ξ-1)3f″(ξ)+2f′(ξ)=0。 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,k为正整数,求证:存在一点ξ∈(0,1),使得ξf′(ξ)+kf(ξ)=f′(ξ).   设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则(  )。 已知f(x)在其定义域内为可导的偶函数,且f′(-3)=-7,则f′(3)=()  
购买搜题卡 会员须知 | 联系客服
会员须知 | 联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    微信扫码登录 账号登录 短信登录
    使用微信扫一扫登录
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位