登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
设α,β为三维非零列向量,(α,β)=3,A=αβ^T,则A的特征值为_______.
主观题
设α,β为三维非零列向量,(α,β)=3,A=αβ^T,则A的特征值为_______.
查看答案
该试题由用户359****96提供
查看答案人数:8652
如遇到问题请
联系客服
正确答案
该试题由用户359****96提供
查看答案人数:8653
如遇到问题请
联系客服
搜索
相关试题
换一换
主观题
设α,β为三维非零列向量,(α,β)=3,A=αβ^T,则A的特征值为_______.
答案
单选题
已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则:
A.β是A的属于特征值0的特征向量 B.a是A的属于特征值0的特征向量 C.β是A的属于特征值3的特征向量 D.a是A的属于特征值3的特征向量
答案
单选题
已知三维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则:()
A.β是A的属于特征值0的特征向量 B.α是A的属于特征值0的特征向量 C.β是A的属于特征值3的特征向量 D.α是A的属于特征值3的特征向量
答案
单选题
已知三维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则:()
A.β是A的属于特征值0的特征向量 B.α是A的属于特征值0的特征向量 C.β是A的属于特征值3的特征向量 D.α是A的属于特征值3的特征向量
答案
单选题
设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于()
A.3 B.5 C.7 D.不能确定
答案
主观题
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.
答案
单选题
设α1,α2,α3是三维列向量,│A│=α│1,α2,α3│,则与│A│相等的是()
A.│α1,α2,α3│ B.│-α2,-α3,-α1│ C.│α1+α2,α2+α3,α3+α1│ D.│α1,α2,α3+α2+α1│
答案
单选题
(2009)设α1,α2,α3是三维列向量,│A│=α│1,α2,α3│,则与│A│相等的是:()
A.│α1,α2,α3│ B.│-α2,-α3,-α1│ C.│α1+α2,α2+α3,α3+α1│ D.│α1,α2,α3+α2+α1│
答案
单选题
(2009)设α1,α2,α3是三维列向量,│A│=α│1,α2,α3│,则与│A│相等的是:()
A.│α1,α2,α3│ B.│-α2,-α3,-α1│ C.│α1+α2,α2+α3,α3+α1│ D.│α1,α2,α3+α2+α1│
答案
单选题
设α,β为四维非零列向量,且α⊥β,令A=αβ^T,则A的线性无关特征向量个数为()
A.1 B.2 C.3
答案
热门试题
设α,β为四维非零列向量,且α⊥β,令A=αβ^T,则A的线性无关特征向量个数为().
设α1,α2,α3,α4 是三维实向量,则( )
设α、β、γ均为三维列向量,以这三个向量为列构成的3阶方阵记为A,即A=(αβγ)。若α、β、γ所组成的向量组线性相关,则 A 的值是( )。
设A是3阶矩阵,是A的属于特征值1的特征向量,是A的属于特征值-1的特征向量,则()
设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
设a1,a2,a3是三维列向量, A = a1,a2,a3 ,则与 A 相等的是:
都是三维列向量
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:
设A是3阶实对称矩阵,Р是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值入的特征向量,则B的属于特征值A的特征向量是()
设A是三阶实对称矩阵,若对任意的三维列向量X,有X^TAX=0,则()
设A是三阶实对称矩阵,若对任意的三维列向量X,有X^TAX=0,则().
设A是三阶实对称矩阵,若对任意的三维列向量X,有X^TAX=0,则()
设二维非零向量α不是二阶方阵A的特征向量. (1)证明α,Aα线性无关; (2)若Aα^2+Aα-6α=0,求A的特征值,讨论A可否对角化;
(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()
(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()
设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()
设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()
设M为3×3实数矩阵,a为M的实特征值λ的特征向量,则下列叙述正确的是( )。
已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则( )。
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP