登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
学历类
>
成考高起点
>
数学(文史)
>
设函数f(x)=x2+(m-5)x+5是偶函数,则m=()。
单选题
设函数f(x)=x
2
+(m-5)x+5是偶函数,则m=()。
A. -3
B. 1
C. 3
D. 5
查看答案
该试题由用户479****13提供
查看答案人数:17355
如遇到问题请
联系客服
正确答案
该试题由用户479****13提供
查看答案人数:17356
如遇到问题请
联系客服
搜索
相关试题
换一换
单选题
设函数f(x)=x
2
+(m-5)x+5是偶函数,则m=()。
A.-3 B.1 C.3 D.5
答案
单选题
设函数f(x)=x
2
+(m-3)x+3是偶函数,则m=
A.-3 B.1 C.3 D.5
答案
单选题
设函数f(x)=x
4
+(m+3)x
3
+4是偶函数,则m=
A.4 B.3 C.-3 D.-41
答案
单选题
设f(x)是以7为周期的偶函数,且f(-2)=5,则f(9)=()
A.-5 B.5 C.-10
答案
单选题
设f(x)是以7为周期的偶函数,且f(-2)=5,则f(9)=( )
A.-5 B.5 C.-10 D.10
答案
单选题
设f(x)是以7为周期的偶函数,且f(-2)=5,则f(9)=()。
A.-5 B.5 C.-10 D.10
答案
单选题
设f (x)为偶函数,ɡ(x)为奇函数,则下列函数中为奇函数的是( )。
A.f[ɡ(x) ] B.f[f (x) ] C.ɡ[f (x) ] D.ɡ[ɡ(x) ]
答案
单选题
设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是( )。
A.f[g(x)] B.f[f(x)] C.g[f(x)] D.g[g(x)]
答案
单选题
设f(x)为偶函数,若f(-2)=3,则f(2)=
A.6 B.-3 C.0 D.3
答案
单选题
设f(x)为偶函数,若f(-2)=3,则f(2)=
A.6 B.-3 C.0 D.3
答案
热门试题
已知函数f(x)=(x-m)
2
+2. (1)若函数f(x)的图像过点(2,2),求函数y=f(x)的单调递增区间; (2)若函数f(x)是偶函数,求m的值
设函数f(x)在(-∞,+∞)上有定义,则下列函数中必为偶函数的是( )
设f(x)是连续的偶函数,则其原函数F(x)一定是()
设函数y=e2x+5,则y"=().
设函数f(x),g(x)均可微,且同为函数h(x)的原函数,又f(5)=7,g(5)=2,则f(x)-g(x)=().
设f(x)是定义在[-a,a]上的任意函数,则下列答案中哪个函数不是偶函数?()
设函数f(x+2)=2x-2-5,则f(4)=( )
设函数ƒ(x+2)=2
x-2
-5,则ƒ(4)=()。
已知函数f(x)=x
2
+2ax+2. (1)若函数f(x)为偶函数,求a的值; (2)若函数f(x)在区间[-5,5]上的最小值是-3,求a的值.
设函数y=x
2
+3x+5,则y"=()
已知函数f(x)在[3-2a,a]上是偶函数,则实数a=()
设f(x)是[-2,2]上的偶函数,且f′(-1)=3,则f′(1).
设f(x)是[-2,2]上的偶函数,且f'(-1)=3,则f'(1)=()
已知f(x)是奇函数,g(x)是偶函数,则().
设函数f(x),g(x)与h(x)均为定义在(-∞,+∞)内的非零函数,且g(x)为奇函数,h(x)为偶函数,则
二次函数y=2x2+mx-5在区间(-∞,-1)内是减函数,在区间(-1,+∞)内是增函数,则m的值是( )
设函数f(x)=3+x5,则f"(x)=
设函数f(x)=3+x5,则f"(x)=
设函数f(x),g(x)的定义域均为R,且f(x)为奇函数,g(x)为偶函数,则下列说法正确的是()
已知f(x)为偶函数,且y=f(x)的图像经过点(2,-5),则下列等式恒成立的是()
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP