登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
学历类
>
统招专升本
>
高数(一)
>
设f(x)在[0,2]上连续,在(0,2)内可导,且f(0)+f(1)=4,f(2)=2,试证明必存在一点ξ∈(0,2),使f′(ξ)=0.
简答题
设f(x)在[0,2]上连续,在(0,2)内可导,且f(0)+f(1)=4,f(2)=2,试证明必存在一点ξ∈(0,2),使f′(ξ)=0.
查看答案
该试题由用户422****40提供
查看答案人数:40262
如遇到问题请
联系客服
正确答案
该试题由用户422****40提供
查看答案人数:40263
如遇到问题请
联系客服
搜索
相关试题
换一换
主观题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)·f(b)>0,f(a)·f[(a+b)/2]<0。试证:对任意实数k,∃ξ∈(a,b),使得f′(ξ)=kf(ξ)。
答案
主观题
设f′(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f[(a+b)/2]<0,试证至少存在一个点ξ∈(a,b)使f′(ξ)=f(ξ)。
答案
单选题
设函数f(x)在(0,1)上可导且在[0,1]上连续,且f'(x)>0,f(0)<0,f(1)>0,则f(x)在(0,1)内()。
A.至少有一个零点 B.有且仅有一个零点 C.没有零点 D.零点的个数不能确定
答案
简答题
设f(x)在[0,2]上连续,在(0,2)内可导,且f(0)+f(1)=4,f(2)=2,试证明必存在一点ξ∈(0,2),使f′(ξ)=0.
答案
单选题
函数f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f(0)<0,f′(x)≥k>0,则在(0,+∞)内f(x)( )。
A.没有零点 B.至少有一个零点 C.只有一个零点 D.有无零点不能确定
答案
主观题
设f(x)在[0,π]上连续,在(0,π)内可导,证明:必∃ξ∈(0,π),使f′(ξ)+3f(ξ)cotξ=0。
答案
主观题
设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。
答案
单选题
设函数f(x)在[a,b]上连续,在(a,b)内可导,f′(x)>0.若f(a)·f(b)<0,则y=f(x)在 (a,b)内()
A.不存在零点 B.存在唯一零点 C.存在极大值点 D.存在极小值点
答案
单选题
设函数f(x)在[a,b]上连续,在(a,b)可导,f"(x)>0,f(a)/f(b)
A.3 B.2 C.1 D.0
答案
简答题
设函数f(x)在区间[0,2]上连续,在区间(0,2)内可导,且f(0)=f(2)=f(1)=2,证明:至少存在一点ξ∈(0,2),使得f′(ξ)=ξ.
答案
热门试题
设函数f(x)在[a,b]上连续,在(a,b)可导,f"(x)>0,f(a),(b)
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,k为正整数,求证:存在一点ξ∈(0,1),使得ξf′(ξ)+kf(ξ)=f′(ξ).
设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,且f′(x)<0,f"(x)<0,则下列结论成立的是()
设f(x)在[a,b]上连续(a>0),在(a,b)内可导,证明:必∃ξ∈(a,b),使[f(a)-f(ξ)]/(ξ2-b2)=f′(ξ)/(2ξ)。
设函数y=f(x)在[0,a]上二阶可导,|f″(x)|≤M,且f(x)在(0,a)内取得最大值。证明:|f′(0)|+|f′(a)|≤Ma。
设函数f(x)和g(x)均在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=f(b)=0,证明:存在一点ξ∈(a,b),使得f’(ξ)+2f(ξ)g(ξ)g’(ξ)=0。
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明:存在ξ,η∈(a,b),使得e
η-ξ
[f’(η)+f(η)]=1。
设函数f(x)可导,且f(x)f′(x)>0,则( )。
设函数f(x)可导,且f(x)f"(x)>0,则
设在f(x)上连续,在[0,1]内可导,且f(0)=f(1),则:在(0,1)内曲线y=f(x)的所有切线中《》( )
若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足f ′(x0)=0的点x0( )。
设f(x)是R上的可导函数,且f(x)>0。若f?(x)-3x2f(x)=0,且f(0)=1,求f(x)。
设 f(x)是 R 上的可导函数,且 f(x)>0。若 f"(x)-3x---2f(x)=0,且 f(0)=1,求 f(x)。
设函数f(x)在[a,b]上连续,在(a,b)可导,f'(x)>0,f(a)f(b)
设函数f(x)在[1,2]上连续,在(1,2)内可导,且f(1)=4f(2),证明:存在ξ∈(1,2),使得2f(ξ)+ξf’(ξ)=0。
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),证明:若f(x)不恒为常数,则至少存在一点ξ∈(a,b),使得f′(ξ)>0.
设f(x)在[0,1]上可微,且满足条件f(0)=0,|f′(x)|≤|f(x)|/2。试证在[0,1]上f(x)≡0。
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3,证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ2+η2。
设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则( )。
设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP