登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
已知平行四边形的周长为10cm,则对角线的长不可为()
单选题
已知平行四边形的周长为10cm,则对角线的长不可为()
A. 2cm
B. 3cm
C. 4cm
D. 5cm
查看答案
该试题由用户104****44提供
查看答案人数:36329
如遇到问题请
联系客服
正确答案
该试题由用户104****44提供
查看答案人数:36330
如遇到问题请
联系客服
搜索
相关试题
换一换
单选题
已知平行四边形的周长为10cm,则对角线的长不可为()
A.2cm B.3cm C.4cm D.5cm
答案
单选题
已知平行四边形ABCD的周长为50cm,△ABC的周长为35cm,则对角线AC的长为()
A.5cm B.10cm C.15cm D.20cm
答案
简答题
用向量的方法证明:对角线互相平分的四边形ABCD是平行四边形.
答案
判断题
“两组对边分别平行”是平行四边形的本质属性,而“两条对角线互相平分”是平行四边形的固有属性()
答案
单选题
如图,平行四边形ABCD的对角线AC、BD交于点O,AD=8,BD=12,AC=6,则△OBC的周长为()
A.13 B.17 C.20 D.26
答案
单选题
一个平行四边形底缩小10倍,高扩大10倍,这个平行四边形的面积()。
A.大小与原来相等 B.缩小10倍 C.扩大10倍
答案
单选题
用细木条钉成的长方形框,沿对角线拉成一个平行四边形,它的周长()。
A.比原来长 B.比原来短 C.与原来相等
答案
简答题
求证:平行四边形两条对角线平方和等于四条边平方和
答案
单选题
设甲:四边形ABCD是平行四边形,乙:四边形ABCD是正方形,则()。
A.甲是乙的充分条件,但不是乙的必要条件 B.甲是乙的必要条件,但不是乙的充分条件 C.甲是乙的充分必要条件 D.甲不是乙的充分条件,也不是乙的必要条件
答案
单选题
平行四边形的()相等
A.四个角 B.四条边 C.对边
答案
热门试题
下列说法:①一组对边相等,另一组对边平行的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③有三个角是直角的四边形是矩形;④正方形的对角线相等。其中错误的有()
下列说法:①一组对边相等,另一组对边平行的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③有三个角是直角的四边形是矩形;④正方形的对角线相等。其中错误的有( )
《义务教育教学课程标准》关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理——平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(2)设计两种让学生发现平行四边形性质的教学流程;(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法
平行四边形有()条高。
力的平行四边形公理
平行四边形有()条高
平行四边形是特殊的()
面积相等的长方形和平行四边形,,它们的周长()。
把一个长方形框架拉成一个平行四边形,则平行四边形面积()原来的长方形面积
设M={平行四边形},N={四边形},P={矩形},则这些集合之间的关系为()
什么是平行四边形法则?
平行四边形:长方形:内角()
《义务教育数学课程标准(2011年版)》关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理-平行四边形的对边以及对角相等。请基于该要求,完成下列教学设计任务: (1)设计平行四边形性质的教学目标; (2)设计两种让学生发现平行四边形性质的教学流程; (3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的数学思想方法。
《义务教育数学课程标准(2011年版)》关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理——平行四边形的对边以及对角相等。请基于该要求,完成下列教学设计任务: (1)设计平行四边形性质的教学目标;(6分) (2)设计两种让学生发现平行四边形性质的教学流程;(12分) (3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的数学思想方法。(12分)
《义务教育教学课程标准(2011年版)》关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理——平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:<br>(1)设计平行四边形性质的教学目标;<br>(2)设计两种让学生发现平行四边形性质的教学流程;<br>(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法
《义务教育教学课程标准(2011年版)》关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理——平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12分)
下列条件中,能判定四边形ABCD为平行四边形的是()
三角形∶平行四边形
三角形:平行四边形()
(2014陕西咸阳)学生已知“平行四边形”这一概念的意义,教师再通过“菱形是四边一样长的平行四边形”这一命题界定菱形,使学生在掌握平行四边形概念基础上学习菱形这一概念,这种学习属于()。
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP