单选题

设函数,f(x)在[a,b]上连续,且F/(x)=f(x),有一点x0∈(a,b)使,f(x0)=0,且当a≤x≤x0时,f(x)>0;当x0<x≤b时,f(x)<0,则f(x)与x=a,x=b,x轴围成的平面图形的面积为()。

A. 2F(x0)-F(b)-F(a)
B. F(b)-F(a)
C. -F(b)-F(a)
D. F(a)-F(b)

查看答案
该试题由用户980****23提供 查看答案人数:12506 如遇到问题请 联系客服
正确答案
该试题由用户980****23提供 查看答案人数:12507 如遇到问题请联系客服

相关试题

换一换
单选题
设函数f(x)在[a,b]上连续且f(x)>0,则
A. B. C. D.的符号无法确定
答案
单选题
设函数f(x)在[a,b]上连续且f(x)>0,则( )
A.见图A B.见图B C.见图C D.见图D E.见图E
答案
单选题
设函数f(x)在[a,b]上连续且f(x)>0,则()  
A.>0 B.<0 C.=0 D.的符号无法确定
答案
单选题
设y=f(x)在[a,b]上连续,在(a,b)内可导,若存在唯一点x0∈(ab),使f′(x0)=0,且在x0左右两侧f′(x)异号,则点x=x0必为f(x)的()  
A.极值点且为最值点 B.极值点但不是最值点 C.最值点但非极值点 D.以上都不对
答案
单选题
设函数,f(x)在[a,b]上连续,且F/(x)=f(x),有一点x0∈(a,b)使,f(x0)=0,且当a≤x≤x0时,f(x)>0;当x0<x≤b时,f(x)<0,则f(x)与x=a,x=b,x轴围成的平面图形的面积为()。
A.2F(x0)-F(b)-F(a) B.F(b)-F(a) C.-F(b)-F(a) D.F(a)-F(b)
答案
论述题
设函数f(x)和g(x)均在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=f(b)=0,证明:存在一点ξ∈(a,b),使得f’(ξ)+2f(ξ)g(ξ)g’(ξ)=0。  
答案
简答题
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,k为正整数,求证:存在一点ξ∈(0,1),使得ξf′(ξ)+kf(ξ)=f′(ξ).  
答案
简答题
设函数f(x)在[a,b]上二阶可导f(a)=f(b)=0,且存在一点c∈(a,b)使得f(c)0。证明:至少存在一点ξ∈(a,b),使得f''(ξ)0。  
答案
简答题
设函数f(x)在区间[0,2]上连续,在区间(0,2)内可导,且f(0)=f(2)=f(1)=2,证明:至少存在一点ξ∈(0,2),使得f′(ξ)=ξ.  
答案
主观题
设在[0,+∞]上函数f(x)有连续导数,且f′(x)≥k>0,f(0)<0,证明:在(0,+∞]内有且仅有一个零点。
答案
热门试题
设在[0,+∞]上函数f(x)有连续导数,且f′(x)≥k>0,f(0) 设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),证明:若f(x)不恒为常数,则至少存在一点ξ∈(a,b),使得f′(ξ)>0.   设函数f(x)连续,且f′(0)>0,则存在δ>0,使得(  )。 设f(x)在[0,2]上连续,在(0,2)内可导,且f(0)+f(1)=4,f(2)=2,试证明必存在一点ξ∈(0,2),使f′(ξ)=0.   设函数f(x)在(0,1)上可导且在[0,1]上连续,且f'(x)>0,f(0)<0,f(1)>0,则f(x)在(0,1)内()。 设f(x)在内连续,且f(x)>0,证明函数在(0,+∞)内为单调增函数。 设函数f(x)在闭区间[0,4]上连续,且有f(0)=f(4)≠f(2),证明:在区间(0,2)内至少存在一点ξ,使得f(ξ)=f(2+ξ).   若f(x)有三阶导数,且f(0)=f(1)=0,设F(x)=x3f(x),试证明在(0,1)内至少存在一点ξ,使F′′′(ξ)=0.   设函数f(x)在点x=O的某邻域内具有连续的二阶导数,且f′(0)=f″(0)=0,则(  )。 设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f"(x)>0,则在(-∞,0)内必有()。 设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f(x)>0,f(x)>0,则在(-∞,0)内必有( )。 设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f"(x)>0, f""(x)>0,则在(-∞,0)内必有: 设f(x)是(-a,a)是连续的偶函数,且当0<x<a时,f(x)<f(0),则有结论() 设f(x)在(-a,a)是连续的偶函数,且当0<x<a时,f(x)<f(0),则有结论( )。 设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。 设f(x),f′(x)在[a,b]上连续,f″(x)在(a,b)内存在,f(a)=f(b)=0,且存在c∈(a,b)使f(c)>0。证明:必∃ξ∈(a,b)使f″(ξ)<0。 设f(x)在(-a,a)是连续的偶函数,且当0() 设f(x)在(-a,a)是连续的偶函数,且当0() 设f(x)在(-a,a)是连续的偶函数,且当0 设偶函数f(x)具有二阶连续导数,且f″(0)≠0,则x=0(  )。
购买搜题卡 会员须知 | 联系客服
会员须知 | 联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    微信扫码登录 账号登录 短信登录
    使用微信扫一扫登录
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位