登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
在任意线性形式下L[af1(t)+bf2(t)]=aF1(s)+bF2(s)()
判断题
在任意线性形式下L[af1(t)+bf2(t)]=aF1(s)+bF2(s)()
查看答案
该试题由用户789****54提供
查看答案人数:3355
如遇到问题请
联系客服
正确答案
该试题由用户789****54提供
查看答案人数:3356
如遇到问题请
联系客服
搜索
相关试题
换一换
判断题
在任意线性形式下L[af1(t)+bf2(t)]=aF1(s)+bF2(s)()
答案
单选题
设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t( )。
A.一定线性相关 B.一定线性无关 C.可能线性相关,也可能线性无关 D.既不线性相关,也不线性无关
答案
单选题
设n维向量组(Ⅰ)α1,α2,…,αs线性无关,(Ⅱ)β1,β2,…,βt线性无关,且αi不能由(Ⅱ)线性表示(i=1,2,…,s),βj且不能由(I)线性表示(j=1,2,…,t),则向量组α1,α2,…,αs,β1,β2,…,βt( ).
A.一定线性相关 B.一定线性无关 C.可能线性相关,也可能线性无关 D.既不线性相关,也不线性无关
答案
单选题
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数,必有( ).
A.α1,α2,α3,kβ1+β2线性无关 B.α1,α2,α3,kβ1+β2线性相关 C.α1,α2,α3,β1+kβ2线性无关 D.α1,α2,α3,β1+kβ2线性相关
答案
单选题
设向量组α1,α2,α3,β1线性相关,向量组α1,α2,α3,β2线性无关,则对于任意常数k,必有( )。
A.α1,α2,α3,kβ1+β2线性无关 B.α1,α2,α3,kβ1+β2线性相关 C.α1,α2,α3,β1+kβ2线性无关 D.α1,α2,α3,β1+kβ2线性相关
答案
单选题
设向量α1、α2、α3线性无关,向量β1可由αl、α2、α3线性表示,向量β2不能由α1、α2、α3线性表示,则对任意常数k必有( ).
A.α1、α2、α3、kβ1+β2线性无关 B.α1、α2、α3、kβ1+β2线性相关 C.α1、α2、α3、β1+kβ2线性元关 D.α1、α2、α3、β1+kβ2线性相关
答案
单选题
设α1,α2,α3为三维向量,则对任意常数k,1,向量组α1+kα3,α2+1α3线性无关是向量组α1,α2,α3线性无关的( )
A.必要非充分条件 B. C.充分非必要条件 D. E.充分必要条件 F. G.既非充分也非必要条件
答案
单选题
设向量组(Ⅰ):α(→)1,α(→)2,…,α(→)r可由向量组(Ⅱ):β(→)1,β(→)2,…,β(→)s线性表示,则( )。
A.r<s时,向量组(Ⅱ)必线性相关 B.r>s时,向量组(Ⅱ)必线性相关 C.r<s时,向量组(Ⅰ)必线性相关 D.r>s时,向量组(Ⅰ)必线性相关
答案
单选题
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则()
B.当ru003es时,向量组Ⅱ必线性相关 D.当ru003es时,向量组Ⅰ必线性相关
答案
单选题
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则()
B.当r>s时,向量组Ⅱ必线性相关 D.当r>s时,向量组Ⅰ必线性相关
答案
热门试题
设向量组(Ⅰ)α1,α2,…αr,可由向量组(Ⅱ)β1,β2,…βs线性表示,则( )。
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则
向量组α1,α2…,αS(s>2)线性无关的充分必要条件是
设向量组(I)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i=1,2,…,s)均可以由α1,…,αs线性表示,则( ).
在n维行向量组α(→)1,α(→)2,…,α(→)r(r≥2)中,α(→)r≠0,试证:对任意的k1,k2,kr-1,向量组β(→)1=α(→)1+k1α(→)r,β(→)2=α(→)2+k2α(→)r,…,β(→)r-1=α(→)r-1+kr-1α(→)r线性无关的充要条件是α(→)1,α(→)2,…,α(→)r线性无关。
设α1,α2,α3均为三维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的
线性规划 min Z=x1-2×2 S.t. –x1+2×2 ≤5 , 2×1+x2 ≤8, x1 ,x2 ≥0 则()
设α1,α2,α3是三维向量,则对任意的常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的( )。
设向量组α1,α2,…,αr(Ⅰ)是向量组α1,α2,…,αs(Ⅱ)的部分线性无关组,则( ).
设α1,α2,α3线性无关,证明α1+α2,α2+α3,α1+α3线性无关。
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,下列命题正确的是( )。
向量组a1,a2,a3,a4,如果其中任意两个向量都线性无关,则a1,a2,a3,a4线性无关()
向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是( )。
设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。
设a1,a2,a3为三维向量,则对任意常数k,l,向量组a1+ka3,a2+la3线性无关是向量组a1,a2,a3线性无关的( )
设向量组α(→)1,α(→)2,α(→)3线性无关,则向量组α(→)1+α(→)2,α(→)2+α(→)3,α(→)1+α(→)3线性____。
设向量β可由向量组α1,α2,…,αr线性表示,但不能由向量组α1,α2,…,αr-1线性表示.证明:(1)αr不能由向量组α1,α2,…,αr-1线性表示;(2)αr能由α1,α2,…,αr,β线性表示.
n维向量α1,α2,…,αs线性无关的充要条件是( ).
设向量组α1,α2,…,α5的秩为r>0,证明:(1)α1,α2,…,α5中任意r个线性无关的向量都构成它的一个极大线性无关组;(2)若α1,α2,…,α5中每个向量都可由其中某r个向量线性表示,则这r个向量必为α1,α2,…,α5的一个极大线性无关组。
列向量组α1,α2,...,αs拼成矩阵A=(α1,α2,...,αs),则该向量组线性相关的充分必要条件是齐次线性方程组Ax=0()。
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP