登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
设函数φ(x)具有二阶连续导数且φ(0)=0,并且已知yφ(x)dx+[sinx-φ(x)]dy=0是一个全微分方程,则φ(x)=( )。
单选题
设函数φ(x)具有二阶连续导数且φ(0)=0,并且已知yφ(x)dx+[sinx-φ(x)]dy=0是一个全微分方程,则φ(x)=( )。
A. -e-x/2+(cosx)/2+(sinx)/2
B. x3-x2/2+1
C. x2ex-2
D. (xcosx)/2+C1cosx+C2sinx
查看答案
该试题由用户701****48提供
查看答案人数:35494
如遇到问题请
联系客服
正确答案
该试题由用户701****48提供
查看答案人数:35495
如遇到问题请
联系客服
搜索
相关试题
换一换
单选题
设偶函数f(x)具有二阶连续导数,且f″(0)≠0,则x=0( )。
A.一定不是函数的驻点 B.一定是函数的极值点 C.一定不是函数的极值点 D.不能确定是否为函数的极值点
答案
单选题
设函数φ(x)具有二阶连续导数且φ(0)=0,并且已知yφ(x)dx+[sinx-φ(x)]dy=0是一个全微分方程,则φ(x)=( )。
A.-e-x/2+(cosx)/2+(sinx)/2 B.x3-x2/2+1 C.x2ex-2 D.(xcosx)/2+C1cosx+C2sinx
答案
主观题
设z=f(x,y),φ(x,y)=0,其中f和φ对x、y具有二阶连续偏导数且φy′≠0,求z对x的二阶导数。
答案
单选题
设函数ψ(x)具有二阶连续导数,且ψ(0)=ψ′(0)=0,并已知yψ(x)dx+[sinx-ψ′(x)]dy=0是一个全微分方程,则ψ(x)等于( )。
A.(xsinx)/2 B.x3-x2/2 C.x2ex D.(xsinx)/2+C1cosx+C2sinx
答案
主观题
设z=f(xy)/x+yφ(x+y),f、φ具有二阶连续导数,则∂2z/∂x∂y=____。
答案
主观题
设z=f(xy)/x+yφ(x+y),f和φ具有二阶连续导数,则∂2z/∂x∂y=____。
答案
单选题
函数厂(x)具有连续的二阶导数,且f″(0)≠0,则x=0( )。《》( )
A.不是函数f(x)的驻点 B.一定是函数f(x)的极值点 C.一定不是函数f(x)的极值点 D.是否为函数f(x)的极值点,还不能确定
答案
单选题
函数f(x)具有连续的二阶导数,且f″(0)≠0,则x=0()
A.不是函数f(x)的驻点 B.一定是函数f(x)的极值点 C.一定不是函数f(x)的极值点 D.是否为函数f(x)的极值点,还不能确定
答案
主观题
设函数z=F(π/2-arctanx,xy),其中F有二阶连续偏导数,求∂2z/∂x2。
答案
单选题
设u=f(x+y,xz)有二阶连续偏导数,则∂2u/∂x∂z=( )。
A.f2′+xf11′+(x+z)f12″+xzf22″ B.xf12″+xzf22″ C.f2′+xf12″+xzf22″ D.xzf22″
答案
热门试题
设函数f(x)具有二阶连续导数,且f(x)>0,f"(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设函数f(x)在点x=O的某邻域内具有连续的二阶导数,且f′(0)=f″(0)=0,则( )。
设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。
设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。
若二元函数z=z(x,y)的全微分dz=9x
3
y
5
dx+φ(x,y)dy,且其具有二阶连续偏导数,则 φ
x
(x,y)=().
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dz/dx。
设函数u(x,y)二阶连续可微,并且满足∂2u/∂x2=∂2u/∂y2,令ξ=x-y,η=x+y,则必有( )。
已知du(x,y)=[axy
3
+cos(x+2y)]dx+[3x
2
y
2
+bcos(x+2y)]dy,且u(x,y)具有二阶连续偏导数.则()
设f具有一阶连续导数,且y=e
f(2sinx)
,则y′=().
设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=____。
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( )。
设z=f(x+y,x/y,x),其中f具有连续二阶偏导数,求∂2z/(∂x∂y)。
设函数u=u(x,y),x=x(ξ,η),y=y(ξ,η)都有二阶连续偏导数,且∂x/∂ξ=∂y/∂η,∂x/∂η=-∂y/∂ξ。 证明:∂2u/∂ξ2+∂2u/∂η2=[(∂x/∂ξ)2+(∂y/∂ξ)2]·(∂2u/∂x2+∂2u/∂y2)。
设z=f(x2-y2,exy),其中f具有连续二阶偏导数,求∂z/∂x,∂z/∂y。
设曲线积分∫L[f(x)-ex]sinydx-f(x)cosydy与路径无关,其中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于( )。
设函数y=f(x)具有二阶导数,且了f′(x)<0,f"(x)<0,又△y=f(x+△x)-f(x),dy= f′(x)△x,则当△x>0时,有()
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且∂φ/∂z≠0,求du/dx。
设u=f(x,y),v=F(x,y),其中f和F都是x和y的有一阶连续偏导数的函数。由此二式也确定了x和y都是u、v的有一阶连续偏导数的函数。证明:[(∂u/∂x)·(∂v/∂y)-(∂u/∂y)·(∂v/∂x)]·[(∂x/∂u)·(∂y/∂v)-(∂x/∂v)·(∂y/∂u)]=1。
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,f′(0)=g′(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是( )。
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP