简答题

设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),证明:若f(x)不恒为常数,则至少存在一点ξ∈(a,b),使得f′(ξ)>0.  

查看答案
该试题由用户446****63提供 查看答案人数:48635 如遇到问题请 联系客服
正确答案
该试题由用户446****63提供 查看答案人数:48636 如遇到问题请联系客服

相关试题

换一换
主观题
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1/2。证明:必∃ξ、η∈(a,b),使e2ξ=(eb+ea)[f′(η)+f(η)]eη。
答案
单选题
设函数 f(x)在x=1处连续且可导,则(   ).
A.a=1,b=0 B.a=0,b=1 C.a=2,b=-1 D.a=-1,b=2
答案
论述题
设函数f(x)在[1,2]上连续,在(1,2)内可导,且f(1)=4f(2),证明:存在ξ∈(1,2),使得2f(ξ)+ξf’(ξ)=0。  
答案
简答题
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),证明:若f(x)不恒为常数,则至少存在一点ξ∈(a,b),使得f′(ξ)>0.  
答案
论述题
设函数f(x)和g(x)均在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=f(b)=0,证明:存在一点ξ∈(a,b),使得f’(ξ)+2f(ξ)g(ξ)g’(ξ)=0。  
答案
论述题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明:存在ξ,η∈(a,b),使得eη-ξ[f’(η)+f(η)]=1。
答案
单选题
若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足()
A.必存在且只有一个 B.至少存在一个 C.不一定存在 D.不存在
答案
主观题
设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。
答案
简答题
设函数f(x)在区间[0,2]上连续,在区间(0,2)内可导,且f(0)=f(2)=f(1)=2,证明:至少存在一点ξ∈(0,2),使得f′(ξ)=ξ.  
答案
主观题
设f(x)在内连续,且f(x)>0,证明函数在(0,+∞)内为单调增函数。
答案
热门试题
设函数f(x)在(0,1)上可导且在[0,1]上连续,且f'(x)>0,f(0)<0,f(1)>0,则f(x)在(0,1)内()。 设函数y=f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),曲线f(x)在(a,b)内平行于x轴的切线()。 设函数y=f(x)在[0,a]上二阶可导,|f″(x)|≤M,且f(x)在(0,a)内取得最大值。证明:|f′(0)|+|f′(a)|≤Ma。 设f(x)在[0,π]上连续,在(0,π)内可导,证明:必∃ξ∈(0,π),使f′(ξ)+3f(ξ)cotξ=0。 设函数f(x)在[a,b]上连续,在(a,b)可导,f"(x)>0,f(a),(b) 函数f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f(0)<0,f′(x)≥k>0,则在(0,+∞)内f(x)(  )。 设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,且f′(x)<0,f"(x)<0,则下列结论成立的是()   设函数f(x)在[a,b]上连续,在(a,b)可导,f"(x)>0,f(a)/f(b) 设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3,证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ2+η2。 设f(x)在[a,b]上连续(a>0),在(a,b)内可导,证明:必∃ξ∈(a,b),使[f(a)-f(ξ)]/(ξ2-b2)=f′(ξ)/(2ξ)。 设函数f(x)在[a,b]上连续,在(a,b)内可导,f′(x)>0.若f(a)·f(b)<0,则y=f(x)在 (a,b)内()   设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则曲线y=f(x)在(a,b)内平行于x轴的切线()   设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,且存在相等的最大值。若f(a)=g(a),f(b)=g(b),证明:  (1)存在η∈(a,b)使f(η)=g(η);  (2)存在ξ∈(a,b)使f″(ξ)=g″(ξ)。 设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则(  )。 设函数y=f(x)在(0,+∞)内有界且可导,则(  )。 设函数f(x)可导,且f(x)f′(x)>0,则(  )。 设函数f(x)可导,且f(x)f"(x)>0,则 设函数y=f(x)在(0,+∞)内有界且可导,则( )。 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,k为正整数,求证:存在一点ξ∈(0,1),使得ξf′(ξ)+kf(ξ)=f′(ξ).  
购买搜题卡 会员须知 | 联系客服
会员须知 | 联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    微信扫码登录 账号登录 短信登录
    使用微信扫一扫登录
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位