登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
设f(x)在[0,1]上可微,且满足条件f(0)=0,|f′(x)|≤|f(x)|/2。试证在[0,1]上f(x)≡0。
主观题
设f(x)在[0,1]上可微,且满足条件f(0)=0,|f′(x)|≤|f(x)|/2。试证在[0,1]上f(x)≡0。
查看答案
该试题由用户283****85提供
查看答案人数:20916
如遇到问题请
联系客服
正确答案
该试题由用户283****85提供
查看答案人数:20917
如遇到问题请
联系客服
搜索
相关试题
换一换
主观题
设f(x)在[0,1]上可微,且满足条件f(0)=0,|f′(x)|≤|f(x)|/2。试证在[0,1]上f(x)≡0。
答案
主观题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)·f(b)>0,f(a)·f[(a+b)/2]<0。试证:对任意实数k,∃ξ∈(a,b),使得f′(ξ)=kf(ξ)。
答案
主观题
设f′(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f[(a+b)/2]<0,试证至少存在一个点ξ∈(a,b)使f′(ξ)=f(ξ)。
答案
主观题
设函数y=f(x)在(-∞,+∞)上可导,且对任意实数a、b均满足f(a+b)=eaf(b)+ebf(a),又知f′(0)=e,试求f(x)及f′(x)。
答案
单选题
设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则( )。
A.f(-2)/f(-1)>1 B.f(0)/f(-1)>e C.f(1)/f(-1)<e2 D.f(2)/f(-1)<e2
答案
简答题
设f(x)在[0,2]上连续,在(0,2)内可导,且f(0)+f(1)=4,f(2)=2,试证明必存在一点ξ∈(0,2),使f′(ξ)=0.
答案
单选题
设函数f (x)在(a, b)内可微,且≠0,则f(x)在(a,b)内()
A.必有极大值 B.必有极小值 C.必无极值 D.不能确定有还是没有极值
答案
简答题
设函数f(t)在[0,+∞)上连续, 且满足方程,求f(t).
答案
单选题
设F'(x)=f(x),f(x)可导且满足f(1)=1,又F(x)-xf(x)=2x
3
,则f(x)=()
A.-3x
2
+4 B.-6x+7 C.6x
2
-5 D.-3x
2
+2
答案
主观题
设函数f(u)可微,且f′(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz|(1,2)=____。
答案
热门试题
设函数f(x)在x=0可导且f(0)=1,又设f(x)满足函数方程f(x+1)=2f(x),求f′(n),其中n是整数。
设函数f(x,y)可微,且f(x+1,ex)=x(x+1)2,f(x,x2)=2x2Inx,则df(1,1)=( ).
设函数f(x,y)可微,且f(x+1,ex)=x(x+1)2,f(x,x2)=2x2lnx,则df(1,1)=( ).
设f(x)是R上的可导函数,且f(x)>0。若f?(x)-3x2f(x)=0,且f(0)=1,求f(x)。
设 f(x)是 R 上的可导函数,且 f(x)>0。若 f"(x)-3x---2f(x)=0,且 f(0)=1,求 f(x)。
设f(x)满足f
2
(lnx)-2xf(lnx)=0,且f(x)≠0,求f(x).
设函数f(x)满足关系式f"(x)+[f′(x)]
2
=-2,且f′(0)=0则()
设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则( )。
设函数f(x)在[1,2]上连续,在(1,2)内可导,且f(1)=4f(2),证明:存在ξ∈(1,2),使得2f(ξ)+ξf’(ξ)=0。
设z=x2f[1+φ(x/y)],f、φ为可微函数,求dz。
设函数f(x)满足f'(sin
2
x)=cos
2
x,且f(0)=0,则f(x)=()
设f(x)是[-2,2]上的偶函数,且f′(-1)=3,则f′(1).
设f(x)是[-2,2]上的偶函数,且f'(-1)=3,则f'(1)=()
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1/2。证明:必∃ξ、η∈(a,b),使e2ξ=(eb+ea)[f′(η)+f(η)]eη。
设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=____。
设函数f(x)在区间[0,2]上连续,在区间(0,2)内可导,且f(0)=f(2)=f(1)=2,证明:至少存在一点ξ∈(0,2),使得f′(ξ)=ξ.
设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内( )。
设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。
设函数z=z(x,y)由方程F(y/x,z/x)=0确定,其中F为可微函数,且F2′≠0,则x·(?z/?x)+y·(?z/?y)=( )。
设函数f(x)满足f(x+Δx)-f(x)=2xf(x)Δx+ο(Δx)(Δx→0),且f(0)=2,则f(1)=
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP