主观题

设A,B为同阶方阵, (1)若A,B相似,证明A,B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当A,B均为实对称矩阵时,证明(1)的逆命题成立

查看答案
该试题由用户249****51提供 查看答案人数:36334 如遇到问题请 联系客服
正确答案
该试题由用户249****51提供 查看答案人数:36335 如遇到问题请联系客服

相关试题

换一换
热门试题
设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____。 若三阶方阵A的特征多项式为f(λ)=λ3—7λ+6,则|A|=()。 设A、B都是4阶方阵且AB=0,则r(A)+r(B)____。 设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA 设A,B都是n阶对称阵,证明AB是对称阵的充要条件是AB=BA. 设A,B是n阶方阵,且AB=O.则下列等式成立的是(). 设A,B是n阶方阵,且AB=0.则下列等式成立的是( ). 设 A 是方阵,如有矩阵关系式 AB=AC ,则必有( ) 设A为3阶方阵,α1,α2,α3是互不相同的3维列向量,且都不是方程组AX=0的解,若B=(α1,α2,α3)满足r(AB)<r(A),r(AB)<r(B),则r(AB)等于(  ). 设A为3阶方阵,α(→)1,α(→)2,α(→)3是互不相同的3维列向量,且都不是方程组Ax(→)=0(→)的解,若B=(α(→)1,α(→)2,α(→)3)满足r(AB)<r(A),r(AB)<r(B),则r(AB)等于(  )。 设A、B为四阶方阵,r(A)=4,r(B)=3,则r[(AB)*]=(  )。 设A与B都是n阶正交矩阵,证明AB也是正交矩阵. 设3阶矩阵A,B满足AB=A+B.证明A-E可逆. 设A是n级方阵,若存在矩阵B,使得AB=E,则A可逆() 已知A,B均为3阶方阵,|A|=2,|B|=-1,则|-2AB|=()。 设a>0,b>0,证明:ab+ba>1 设A,B,C均为n阶矩阵,若AB=C,且B可逆,则 设A,B,C均为n阶矩阵,若AB=C,且B可逆,则(  )。 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ) 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则(  )。
购买搜题卡 会员须知 | 联系客服
会员须知 | 联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    微信扫码登录 账号登录 短信登录
    使用微信扫一扫登录
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位