判断题

设总体X~N(20,169),已知1x,2x,…,100x是来自X的样本。则样本均值的分布服从均值为20、方差为16.9的正态分布。

查看答案
该试题由用户113****39提供 查看答案人数:5428 如遇到问题请 联系客服
正确答案
该试题由用户113****39提供 查看答案人数:5429 如遇到问题请联系客服

相关试题

换一换
热门试题
已知x<0,且[x]原=x0.x1x2…xn,则[x]反可通过求得() 设总体X服从于泊松分布P(λ),(X1,X2,…,Xn)是来自总体X的一个样本。  (1)写出(X1,X2,…,Xn)的概率分布;  (2)计算E(X(_)),D(X(_)),E(S2);  (3)设总体的容量为n=10的一组样本的观察值为(4,3,3,4,2,1,6,5,4,8),试求样本均值,样本方差和经验分布函数。 设X1,X2,…,Xn相互独立且同服从分布B(1,p),Z=X1+X2+…+Xn,证明Z~B(n,p)。 设总体X~N(μ0,σ2),μ0未知,X1,X2,…,Xn为来自正态总体X的样本,记X(_)为样本均值,S2为样本方差,对假设检验H0:σ≥2;H1:σ<2,应取检验统计量χ2为(  )。 中国大学MOOC: 设有n维随机变量(X1,X2,…,Xn),其分布函数是指F(x1,x2,…,xn) =P{X1£x1,X2£x2,…,Xn£xn},其中x1,x2,…,xn,为任意实数. 设函数f(x)在(a,b)内连续,a<x1<x2<…<xn<b,证明:必∃ξ∈(a,b),使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。 设总体X~N(μ,25),X1,X2,…,X100为来自总体的简单随机样本,求样本均值与总体均值之差不超过1.5的概率 设X1,…,Xn是取自总体X的容量为n的样本,总体均值E(X)=μ未知,μ的无偏估计是( ). 设样本X1,X2,…,Xn来自总体X~N(μ,σ2),其中μ和σ2均为未知参数,设随机变量L是关于μ的置信度1-α的置信区间的长度,求E(L2)。 中国大学MOOC: 设随机变量X1, X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1, X2,…,Xn(). 设随机变量X1,X2,…,Xn相互独立,且均在区间[0,θ]上服从于均匀分布,设Y1=max{X1,X2,…,Xn},Y2=min{X1,X2,…,Xn},求E(Y1),E(Y2),D(Y1),D(Y2)。 设随机变量X1,X2,…,Xn相互独立,且均在区间[0,θ]上服从于均匀分布,设Y1=max{X1,X2,…Xn},Y2=min{X1,X2,…Xn},求E(Y1),E(Y2),D(Y1),D(Y2). 设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,Xn是取自总体X的样本,则λ的最大似然估计是( ). 设X是随机变量,已知P(X≤1)=p,P(X≤2)=q,则P(X≤1,X≤2)等于( ). 设σ是总体X的标准差,X1, X2,..., Xn是它的样本,则样本标准差S是总体标准差σ的相合估计量 设总体X服从于分布f(x,λ)=e-|x|/λ/(2λ)(-∞<x<+∞)其中λ>0。若取得样本值X1,X2,…,Xn,试求:  (1)E(|X|),E(|X2|);  (2)参数λ的极大似然估计值λ(∧);  (3)λ(∧)是否为参数A的无偏估计量? 已知f(x)=x(1-x)(2-x)…(100-x),且f′(a)=2×98!,则a=(  )。 已知f(x)=x(1-x)(2-x)…(100-x),且f′(a)=2×98!,则a=____。 设X是随机变量.已知P(X≤1)=0.3,P(X≥2)=0.4,则P(1<X<2)等于() 设X是随机变量.已知P(X≤1)=0.3,P(X≥2)=0.4,则P(1<X<2)等于( ).
购买搜题卡 会员须知 | 联系客服
会员须知 | 联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    微信扫码登录 账号登录 短信登录
    使用微信扫一扫登录
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位