登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
职业资格
>
房地产估价师
>
理论与方法
>
直线趋势法设定∑x=0是为了减便计算。()
判断题
直线趋势法设定∑x=0是为了减便计算。()
查看答案
该试题由用户391****23提供
查看答案人数:34673
如遇到问题请
联系客服
正确答案
该试题由用户391****23提供
查看答案人数:34674
如遇到问题请
联系客服
搜索
相关试题
换一换
判断题
直线趋势法设定∑x=0是为了减便计算。()
A.正确 B.错误
答案
单选题
设f(x)g(x)在x0处可导,且f(x0)=g(x0)=0,f′(x0)g′(x0)>0,f″(x0)、g″(x0)存在,则( )
A.x0不是f(x)g(x)的驻点 B.x0是f(x)g(x)的驻点,但不是它的极值点 C.x0是f(x)g(x)的驻点,且是它的极小值点 D.x0是f(x)g(x)的驻点,且是它的极大值点
答案
判断题
在直线趋势法中,由于∑X=0,所以∑XY=0。()
A.对 B.错
答案
判断题
在直线趋势法中,由于∑X=0,所以∑XY=0。()
A.正确 B.错误
答案
填空题
设函数f(x)=x
2
-2x+4,曲线y=f(x)在(x0,f(x0))处的切线与直线y=x-1平行,则x0=
答案
单选题
设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2-x垂直,则当Δx→0时,该函数在x=x0处的微分dy是( )。
A.与Δx同阶但不等价的无穷小 B.与Δx等价的无穷小 C.比Δx高阶的无穷小 D.比Δx低阶的无穷小
答案
单选题
设f(x)在(-∞,+∞)可导,x0≠0,(x0,f(x0))是y=f(x)的拐点,则( )。
A.x0必是f′(x)的驻点 B.(-x0,-f(x0))必是y=-f(-x)的拐点 C.(-x0,-f(x0))必是y=-f(x)的拐点 D.对∀x>x0与x<x0,y=f(x)的凸凹性相反
答案
主观题
设f(x)是n次多项式:f(x)=a0+a1x+a2x2+…+anxn(an≠0),且f(x0)=f′(x0)=f″(x0)=…=f(m)(x0)=0,f(m+1)(x0)≠0(m<n-1)。试问x=x0是方程f(x)=0的多少重根?
答案
单选题
设f'(x0)=0,则x=x0
A.为f(x)的驻点 B.不为f(x)的驻点 C.为f(x)的极大值点 D.为f(x)的极小值点
答案
主观题
设曲线y=sinx(0≤x≤π/2),x轴及直线x=π/2所围成的平面图形为D,在区间(0,π/2)内求一点x0(0是下标),使直线x=x0 将D分为面积相等的两部分。
答案
热门试题
设f′(x0)=f″(x0)=0,f?(x0)>0,且f(x)在x0点的某邻域内有三阶连续导数,则下列选项正确的是( )。
命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是()
设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.
设函数f(x)在定义域I上的导数大于零,若对任意x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)表达式。
设函数θ(x)在(-∞,+∞)内连续,f(x)=cosθ(x),f′(x)=sinθ(x)。对θ(x0)≠nπ的x0,求θ′(x0)。
偏导数fx(x0,y0),fy(x0,y0)存在是函数z=f(x,y)在点(x0,y0)连续的()
已知f(-x)=-f(x)且f′(-x0)=m≠0,则f′(x0)=____。
已知f(-x)=-f(x)且f′(-x0)=m≠0,则f′(x0)=()
已知f(-x)=-f(x)且f′(-x0)=m≠0,则f′(x0)=( )。
(2011)如果f(x)在x0可导,g(x)在x0不可导,则f(x)g(x)在x0:()
如果f(x)在x0点可导,g(x)在x0点不可导,则f(x)g(x)在x0点:
如果f(x)在X0点可导,g(x)在X0点不可导,则f(x)g(x)在X0点()
设函数f(x)在[a,b]上连续,满足f([a,b])∈[a,b]。证明:存在x0,∈[a,b],使得f(x0)=x0。
设y=f(x)是y″-2y′+4y=0的一个解,若f(x0)>0且f′(x0)=0,则f(x)在点x0处( ).
已知函数y=f(x)对一切x满足,若f’(x0)=0(x0≠0),则().
函数f(x)在点x=x0处连续是f(x)在x0处可导的( )
设y=f(x)满足关系式y″-2y′+4y=0,且f(x0)>0,f′(x0)=0,则f(x)在x0点处( )。
函数z=f(x,y)在P0(x0,y0)处可微分,且f′(x0,y0)=0,fy′(x0,y0)=0,则f(x,y)在P0(x0,y0)处有什么极值情况?()
如果曲线y=f(x)在点x0不可导,则曲线在点(x0,f(x0)) 处切线不存在.
设函数f(x)在x=x0的某邻域内连续,在x=x0处可导,则函数f(x)|f(x)|在x=x0处()
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP