登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
学历类
>
统招专升本
>
高数(一)
>
当x=1时,f(x)=x3+3px+q取到极值(其中q为任意常数),则p=().
填空题
当x=1时,f(x)=x
3
+3px+q取到极值(其中q为任意常数),则p=().
查看答案
该试题由用户845****65提供
查看答案人数:9955
如遇到问题请
联系客服
正确答案
该试题由用户845****65提供
查看答案人数:9956
如遇到问题请
联系客服
搜索
相关试题
换一换
主观题
当x=1时,,(z)=x3+3px+q取到极值(其中q为任意常数),则p=.
答案
填空题
当x=1时,f(x)=x
3
+3px+q取到极值(其中q为任意常数),则p=().
答案
主观题
已知函数f(x)=Inx+ax+bx(其中ab为常数且a≠0)在x=1处取得极值。(1)当a=1时,求f(x)的单调区间;
答案
主观题
设f(x)在(一∞,+∞)内有定义,且存在常数k与α>1,使|f(x1)-f(x2)|≤k|x1-x2|α对任意x1、x2成立.证明:f(x)=c (-∞
答案
主观题
设f(x)在(-∞,+∞)内有定义,且存在常数k与α>1,使|f(x1)-f(x2)|≤k|x1-x2|α对任意x1、x2成立。证明:f(x)=c(-∞<x<+∞,c为常数)。
答案
判断题
如果X的分布函数为F(x), 则对任意实数x1 < x2 ,有P{ x1 < x2 }=F(x2) – F(x1)()
答案
主观题
若p/q是f(x)的根,其中(p,q)=1,则f(x)=(px-q)g(x),当x=1时,f(1)/(p-q)是什么?
答案
单选题
若P(X≤x2)=0.6,P(X≥x1)=0.7,其中x2>x1,则P(x1≤X≤x2)的值为()。
A.0.6 B.0.7 C.0.1 D.0.3
答案
判断题
中国大学MOOC: 如果X的分布函数为F(x), 则对任意实数x1 < x2 ,有P{ x1 < X< x2 }=F(x2) – F(x1).
答案
单选题
映射f:A→B,若A中任意两个不同元素x1≠x2有f(x1)≠f(x2),则f是()
A.单射 B.满射 C.双射 D.反射
答案
热门试题
映射f:A→B,若A中任意两个不同元素x1≠x2有f(x1)≠f(x2),则f是
设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是( ).
设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是( )。
中国大学MOOC: 设有n维随机变量(X1,X2,…,Xn),其分布函数是指F(x1,x2,…,xn) =P{X1£x1,X2£x2,…,Xn£xn},其中x1,x2,…,xn,为任意实数.
设函数f(x)对任意x均满足f(x+1)=af(x),且f′(0)=b,其中a,b为非零常数,则()
X1=+1001,则X1的反码是()。
X1=+1001,则X1的反码是( )。
X1=+1001,则X1的反码是()。
对于代数系统和, 若存在一个映射f:X→Y,使得对任意x1, x2∈X,有:f(x1*x2)=f(x1)⊙f(x2),f(x1°x2)=f(x1)◎f(x2), 则称f是从到的同态映射,称与同态。
若函数f(x)对任意实数x1、x2均满足关系式f(x1+x2)=f(x1)f(x2)。且f′(0)=2,则必有( )
已知微分方程y"+p(x)y = q(x)[q(x)≠0]有两个不同的特解y1(x), y2(x),C为任意常数,则该微分方程的通解是:
已知微分方程y"+p(x)y=q(x)[q(x)≠0]有两个不同的特解:y1(x),y2(x),则该微分方程的通解是:(c为任意常数)
己知函数y=f(x)在x1和x2处的值分别为y1和y2,其中,x2>x1且x2-x1比较小(例如0.01),则对于(x1,x2)区间内的任意x值,可用线性插值公式( )近似地计算出f(x)的值。
若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点(x1<x2),则至少存在一点ξ,使( )
已知A为3×4矩阵,X=(x1,x2,x3,x4)T,AX=0有通解k(1,l,O,-1)T,其中k为任意常数,将A中去掉第i列(i=1,2,3,4)的矩阵记为Ai,则下列方程组中有非零解的是( ).
已知A为3×4矩阵,X(→)=(x1,x2,x3,x4)T,AX(→)=0(→)有通解k(1,l,0,-1)T,其中k为任意常数,将A中去掉第i列(i=1,2,3,4)的矩阵记为Ai,则下列方程组中有非零解的是( )。
(2012)已知微分方程y′+p+(x)y=q(x)[q(x)≠0]有两个不同的特解y1(x),y2(x),则该微分方程的通解是:(c为任意常数)()
设函数f(x)对任意x均满足等式f(1+x)=af(x),且有f'(0)=b,其中a,b为不相等的非零常数,则( )
在线性回归模型中,若解释变量X1和X2的观测值成比例,既有X1i=kX2i,其中k为非零常数,则表明模型中存在()。
x1~poisson(μ1),x2~poisson(μ2),则
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP