登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
设α1,α2,…,αs为s个线性无关的n维向量,证明:存在n个未知数的齐次线性方程组,使α1,α2,…,αs是它的一个基础解系。
主观题
设α1,α2,…,αs为s个线性无关的n维向量,证明:存在n个未知数的齐次线性方程组,使α1,α2,…,αs是它的一个基础解系。
查看答案
该试题由用户998****18提供
查看答案人数:35276
如遇到问题请
联系客服
正确答案
该试题由用户998****18提供
查看答案人数:35277
如遇到问题请
联系客服
搜索
相关试题
换一换
主观题
设α(→)1,α(→)2,…,α(→)s为s个线性无关的n维向量,证明:存在n个未知数的齐次线性方程组,使α(→)1,α(→)2,…,α(→)s是它的一个基础解系。
答案
主观题
设α1,α2,…,αs为s个线性无关的n维向量,证明:存在n个未知数的齐次线性方程组,使α1,α2,…,αs是它的一个基础解系。
答案
主观题
设α1,α2,…,αn为n个线性无关的n维列向量,且与向量β正交.证明:向量β为零向量.
答案
单选题
设n维向量组α1,α2,...,αm线性无关,则()。
A.向量组中增加一个向量后仍线性无关 B.向量组中去掉一个向量后仍线性无关 C.向量组中每个向量都去掉第一个分量后仍线性无关 D.向量组中每个向量任意增加一个分量后仍线性无关
答案
单选题
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).
A.向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示 B.向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示 C.向量组α1,…,αm与向量组β1,…,βm等价 D.矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m
答案
主观题
设α(→)1,α(→)2,…,α(→)m及β(→)为m+1个n维向量,且β(→)=α(→)1+α(→)2+…+α(→)m(m>1)。证明:向量组β(→)-α(→)1,β(→)-α(→)2,…,β(→)-α(→)m线性无关的充分必要条件是α(→)1,α(→)2,…,α(→)m线性无关。
答案
单选题
n维向量组,α1,α2,…,αs(3≤s≤n)线性无关的充要条件是( ).
A.存在一组不全为0的数k1,k2,…,kis,使kα1+k2α2+…+ksαs≠0 B.α1,α2,…,αs,中任意两个向量都线性无关 C.α1,α2,…,αs,中存在一个向量不能由其余向量线性表示 D.α1,α2,…,αs,中任何一个向量都不能由其余向量线性表示
答案
单选题
n维向量α1,α2,…,αs线性无关的充要条件是( ).
A.存在不全为0的k1,k2,…,ks使klα1+k2α2+…+ksαs≠0 B.添加向量β后,α1,α2,…,αs,β线性无关 C.去掉任一向量αi后,α1,α2,…,αi-1,αi+1,…,αs线性无关 D.α1,α2-α1,α3-α1,…,αs-α1线性无关
答案
单选题
n维向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是( )。
A.α(→)1,α(→)2,…,α(→)s中没有零向量 B.向量组的个数不大于维数,即s≤n C.α(→)1,α(→)2,…,α(→)s中任意两个向量的分量不成比例 D.某向量β(→)可由α(→)1,α(→)2,…,α(→)s线性表示,且表示法唯一
答案
主观题
n维向量组a1, a2, ××× , as线性无关, b为一n维向量, 则
答案
热门试题
设n维向量组(Ⅰ)α1,α2,…,αs线性无关,(Ⅱ)β1,β2,…,βt线性无关,且αi不能由(Ⅱ)线性表示(i=1,2,…,s),βj且不能由(I)线性表示(j=1,2,…,t),则向量组α1,α2,…,αs,β1,β2,…,βt( ).
设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t( )。
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r
设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵。证明:B=KA行无关的充分必要条件是R(K)=r
齐次坐标表示法用n维向量表示一个n+1维向量。()
对于含有n个未知数的n个线性方程的线性方程组,如果系数行列式不等于0,则该线性方程组有惟一解。
设α,β,γ,δ是n维向量,已知α,β线性无关,γ可以由α,β线性表示,δ不能由α,β线性表示,则以下选项中正确的是()
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关
设向量组α1,α2,…,α5的秩为r>0,证明:(1)α1,α2,…,α5中任意r个线性无关的向量都构成它的一个极大线性无关组;(2)若α1,α2,…,α5中每个向量都可由其中某r个向量线性表示,则这r个向量必为α1,α2,…,α5的一个极大线性无关组。
n+1个n维向量一定线性相关
单片定位要求解2个未知数()
两个n维向量线性相关的充要条件是两个n维向量的各个分量对应成比例.
两个n维向量线性相关的充要条件是两个n维向量的各个分量对应成比例()
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,并举例说明逆命题不成立.
设A是n*n常数矩阵(n>1),X是由未知数X1、X2、…、Xn组成的列向量,B是由常数b1、b2、…、bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是( )。
任意n阶实称矩阵都存在n个线性无关的特征向量。()
设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()
设α1,α2,α3, β为n维向量组,已知α1,α2,β线性相关,α2,, α3,β线性无关,则下列结论中正确的是()
设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。
设A是一个m×n矩阵,证明:矩阵A的行空间维数等于它的列空间维数。
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP