登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
学历类
>
统招专升本
>
高数(一)
>
设f(x)在[a,b]上有连续,在(a,b)内可导,b-a≥4,求证:存在一点ξ∈(a,b),使得f"(ξ)<f2(ξ).
简答题
设f(x)在[a,b]上有连续,在(a,b)内可导,b-a≥4,求证:存在一点ξ∈(a,b),使得f"(ξ)<f
2
(ξ).
查看答案
该试题由用户833****63提供
查看答案人数:18185
如遇到问题请
联系客服
正确答案
该试题由用户833****63提供
查看答案人数:18186
如遇到问题请
联系客服
搜索
相关试题
换一换
简答题
设f(x)在[a,b]上有连续,在(a,b)内可导,b-a≥4,求证:存在一点ξ∈(a,b),使得f"(ξ)<f
2
(ξ).
答案
简答题
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,k为正整数,求证:存在一点ξ∈(0,1),使得ξf′(ξ)+kf(ξ)=f′(ξ).
答案
判断题
函数在一点连续,一定在该点可导
答案
主观题
函数在一点可导与在该点连续的关系是__________.
答案
简答题
设f(x)在[0,2]上连续,在(0,2)内可导,且f(0)+f(1)=4,f(2)=2,试证明必存在一点ξ∈(0,2),使f′(ξ)=0.
答案
主观题
设f(x)在[a,b]上有二阶连续导函数,若f′(a)=f′(b)=0,证明:在(a,b)内至少存在一点ξ,使|f(b)-f(a)|≤|f″(ξ)|(b-a)2/4。
答案
单选题
已知△ABC的三边长AC=3,BC=4,AB=5,P为AB边上任意一点,则CP→ (BA→-BC→)的最大值为( )
A.8 B.9 C.12 D.15
答案
单选题
已知△ABC的三边长AC=3,BC=4,AB=5,P为AB边上任意一点,则CP→ (BA→-BC→)的最大值为()
A.8 B.9 C.12
答案
简答题
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),证明:若f(x)不恒为常数,则至少存在一点ξ∈(a,b),使得f′(ξ)>0.
答案
单选题
设y=f(x)在[a,b]上连续,在(a,b)内可导,若存在唯一点x
0
∈(ab),使f′(x
0
)=0,且在x
0
左右两侧f′(x)异号,则点x=x
0
必为f(x)的()
A.极值点且为最值点 B.极值点但不是最值点 C.最值点但非极值点 D.以上都不对
答案
热门试题
设函数f(x)和g(x)均在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=f(b)=0,证明:存在一点ξ∈(a,b),使得f’(ξ)+2f(ξ)g(ξ)g’(ξ)=0。
设函数?(x)在 R 上连续且可导。 (1)当?(x)=x2,且 g(x)=ex?(x)时,求证?(x)与 g(x)有共同驻点。(4 分) (2)当?(a)=f(b)=0(a<b)时,求证方程?′(x)+ ?(x)=0 在(a,b)内至少有一个实根。(6 分)
设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。
设函数f(x)在区间[0,2]上连续,在区间(0,2)内可导,且f(0)=f(2)=f(1)=2,证明:至少存在一点ξ∈(0,2),使得f′(ξ)=ξ.
有一线段AB上有一点C,AC://CB=2:3;则必有ac:cb=2:3。
设函数f(x)在闭区间[a,b]上有定义,在开区间(a,b)内可导,则( )。
设a>0,b>0,证明:ab+ba>1
设A、B都是n阶方阵,满足AB=A-B,请证明:AB=BA
设f(x)g(x)均在[3,7]上连续,在(3,7)内可导,且g(x)≠0,f(3)=0,f(7)=0.证明:存在一点ξ∈(3,7),使得f′(ξ)g(ξ)-f(ξ)g′(ξ)=0.
设函数f(x)在[a,b]上二阶可导f(a)=f(b)=0,且存在一点c∈(a,b)使得f(c)0。证明:至少存在一点ξ∈(a,b),使得f''(ξ)0。
罗尔定理:设函数ƒ(x)满足条件:(1)在闭区间[a,b]上连续,(2)在开区间(a,b)内可导,(3)ƒ(a)=ƒ(b),则在(a,b)内至少存在一点ξ,使得ƒ´(ξ)=0。证明这个定理并说明其几何意义。
C.-R.条件是函数在一点可导的条件
函数在某点连续,则在该点可导。
求证:设函数f(x),g(x)在点x=a可导,f(a)=g(a)=0且存在δ>0,使得当0<|x-a|<δ时,有|f(x)|≥|g(x)|,则|f′(a)|≥|g′(a)|。
若角120°的终边上有一点(-4,a),则a的值为 ___________.
设f′(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f[(a+b)/2]<0,试证至少存在一个点ξ∈(a,b)使f′(ξ)=f(ξ)。
设函数f(x)在[a,b]上连续,在(a,b)可导,f'(x)>0,f(a)f(b)
设A,B都是n阶对称阵,证明AB是对称阵的充要条件是AB=BA.
设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA
设函数 f(x)在x=1处连续且可导,则( ).
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP