登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
已知f(x)在(-∞,+∞)内有三阶连续导数,并且当h≠0时,[f(x+h)-f(x)]/h=f′(x+h/2)。证明:必存在常数a、b、c,使f(x)=a+bx+cx2。
主观题
已知f(x)在(-∞,+∞)内有三阶连续导数,并且当h≠0时,[f(x+h)-f(x)]/h=f′(x+h/2)。证明:必存在常数a、b、c,使f(x)=a+bx+cx2。
查看答案
该试题由用户637****77提供
查看答案人数:25483
如遇到问题请
联系客服
正确答案
该试题由用户637****77提供
查看答案人数:25484
如遇到问题请
联系客服
搜索
相关试题
换一换
主观题
已知f(x)在(-∞,+∞)内有三阶连续导数,并且当h≠0时,[f(x+h)-f(x)]/h=f′(x+h/2)。证明:必存在常数a、b、c,使f(x)=a+bx+cx2。
答案
单选题
设f′(x0)=f″(x0)=0,f?(x0)>0,且f(x)在x0点的某邻域内有三阶连续导数,则下列选项正确的是( )。
A.f′(x0)是f′(x)的极大值 B.f(x0)是f(x)的极大值 C.f(x0)是f(x)的极小值 D.(x0,f(x0))是曲线y=f(x)的拐点
答案
单选题
设函数φ(x)具有二阶连续导数且φ(0)=0,并且已知yφ(x)dx+[sinx-φ(x)]dy=0是一个全微分方程,则φ(x)=( )。
A.-e-x/2+(cosx)/2+(sinx)/2 B.x3-x2/2+1 C.x2ex-2 D.(xcosx)/2+C1cosx+C2sinx
答案
单选题
设偶函数f(x)具有二阶连续导数,且f″(0)≠0,则x=0( )。
A.一定不是函数的驻点 B.一定是函数的极值点 C.一定不是函数的极值点 D.不能确定是否为函数的极值点
答案
单选题
称二阶导数的导数为三阶导数,阶导数的导数为阶导数。()
A.正确 B.错误
答案
主观题
设z=f(x,y),φ(x,y)=0,其中f和φ对x、y具有二阶连续偏导数且φy′≠0,求z对x的二阶导数。
答案
判断题
称二阶导数的导数为三阶导数,n阶导数的导数为n+1阶导数.
答案
单选题
设函数ψ(x)具有二阶连续导数,且ψ(0)=ψ′(0)=0,并已知yψ(x)dx+[sinx-ψ′(x)]dy=0是一个全微分方程,则ψ(x)等于( )。
A.(xsinx)/2 B.x3-x2/2 C.x2ex D.(xsinx)/2+C1cosx+C2sinx
答案
主观题
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dz/dx。
答案
判断题
y=fx在点x0连续,则y=fx在点x0必定可导()
答案
热门试题
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且∂φ/∂z≠0,求du/dx。
设f具有一阶连续导数,且y=e
f(2sinx)
,则y′=().
若?(x)在x=0的邻域内有n阶连续的导数,并且可以表达为n阶多项式带余项的形式,则该表达式唯一()
设u=f(x+y,xz)有二阶连续偏导数,则∂2u/∂x∂z=( )。
二元函数z=f(x,y)在点(x0,y0)处存在一阶连续偏导数是它在此点处可微的( )。
设曲线积分∫L[f(x)-ex]sinydx-f(x)cosydy与路径无关,其中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于( )。
如果 在 的邻域内有 阶连续的导数并且可以表达为 ,那么该表达式不唯一。()
设函数z=z(x,y)由方程F(xz/y,yz/x)=0所给出,证明x∂z/∂x+y∂z/∂y=0(其中F有一阶连续偏导数)。
如果在的邻域内有阶连续的导数并且可以表达为,那么该表达式不唯一()
设z=f(xy)/x+yφ(x+y),f、φ具有二阶连续导数,则∂2z/∂x∂y=____。
当a/h0>l的牛腿为();当a/h0≤1者为()
设函数f(x)具有二阶连续导数,且f(x)>0,f"(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设函数z=F(π/2-arctanx,xy),其中F有二阶连续偏导数,求∂2z/∂x2。
设z=f(xy)/x+yφ(x+y),f和φ具有二阶连续导数,则∂2z/∂x∂y=____。
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,f′(0)=g′(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是( )。
函数厂(x)具有连续的二阶导数,且f″(0)≠0,则x=0( )。《》( )
函数f(x)具有连续的二阶导数,且f″(0)≠0,则x=0()
设z=f(x2-y2,cos(xy)),x=rcosθ,y=rsinθ,求∂z/∂r。其中f有一阶连续偏导数
已知函数?(x)在点 x0连续,则下列说法正确的是()。
设z=f(x
2
-y
2
,e
2x
),f具有一阶连续偏导数,求dz.
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP