判断题

若z=f(x,y)在点M0(x0,y0)可微,则z=f(x,y)在点M0(x0,y0)连续()

查看答案
该试题由用户687****60提供 查看答案人数:7833 如遇到问题请 联系客服
正确答案
该试题由用户687****60提供 查看答案人数:7834 如遇到问题请联系客服

相关试题

换一换
热门试题
若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线() 设y=f(x)是y″-2y′+4y=0的一个解,若f(x0)>0且f′(x0)=0,则f(x)在点x0处(  ). 考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。 考虑二元函数f(x,y)的四条性质: ①f(x,y)在点(x0,y0)处连续;②f(x,y)的一阶偏导数在点x0,y0)处连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的一阶偏导数存在, 则下列关系正确的是()   y=fx在点x0连续,则y=fx在点x0必定可导() 在平面x+y+z-2=0和平面x+2y-z-1=0的交线上有一点M,它与平面x+2y+z+1=0和x+2y+z-3=0等距离,则M点的坐标为() 若f(x)在x0点可指导,则丨f(x)丨也在x0点可指导。 若f(x)在x0点可指导,则丨f(x)丨也在x0点可指导。 设y=f(x)满足关系式y″-2y′+4y=0,且f(x0)>0,f′(x0)=0,则f(x)在x0点处(  )。 试证:若函数f(x,y)的两个偏导数在点(x0,y0)的某个邻域内存在且有界,则f(x,y)在点(x0,y0)处连续。 若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微 若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微 若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微() 若集合M={x│x+1≥0},N={x│x-1≤0},则M∩N=()   设f(x,y)与φ(x,y)均为可微函数,且φy′(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是(  )。 点的集合M={(x,y)|xy≥0}是指(        ) 在平面x+y+z-2=O和平面x+2y-z-1=0的交线上有一点M,它与平面x+2y+z+1=0和x+2y+z- 3 = 0 等距离,则M 点的坐标为(  ). 二元函数z=f(x,y)在点(x0,y0)可微是其在该点偏导数存在的() 已知二元函数f(x,y)在点(x0,y0)处偏导数存在,则fx(x0,y0)=0,fy(x0,y0)=0是函数f(x,y)在该点取得极值的()   若Δy=?(x+Δx)-?(x),则当Δx→0时必有Δy→0。
购买搜题卡 会员须知 | 联系客服
会员须知 | 联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    微信扫码登录 账号登录 短信登录
    使用微信扫一扫登录
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位