单选题

考虑二元函数f(x,y)的四条性质: ①f(x,y)在点(x0,y0)处连续;②f(x,y)的一阶偏导数在点x0,y0)处连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的一阶偏导数存在, 则下列关系正确的是()  

A. ②⇒③⇒①
B. ③⇒②⇒①
C. ③⇒④⇒①
D. ③⇒①⇒④

查看答案
该试题由用户653****56提供 查看答案人数:46679 如遇到问题请 联系客服
正确答案
该试题由用户653****56提供 查看答案人数:46680 如遇到问题请联系客服

相关试题

换一换
单选题
考虑二元函数f(x,y)的四条性质: ①f(x,y)在点(x0,y0)处连续;②f(x,y)的一阶偏导数在点x0,y0)处连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的一阶偏导数存在, 则下列关系正确的是()  
A.②⇒③⇒① B.③⇒②⇒① C.③⇒④⇒① D.③⇒①⇒④
答案
主观题
已知函数f(x,y)满足fxy″=2(y+1)ex,fx′(x,0)=(x+1)ex,f(0,y)=y2+2y,求f(x,y)的极值。
答案
单选题
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。
A.②⇒③⇒① B.③⇒②⇒① C.③⇒④⇒① D.③⇒①⇒④
答案
单选题
二元函数z=f(x,y)在点(x0,y0)处存在一阶连续偏导数是它在此点处可微的(  )。
A.充分条件 B.必要条件 C.充要条件 D.以上都不是
答案
单选题
对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?
A.必要条件而非充分条件 B.充分条件而非必要条件 C.充分必要条件 D.既非充分又非必要条件
答案
单选题
二元函数f(x,y)在点(0,0)处可微的一个充分条件是(  )。
A.见图A B.见图B C.见图C D.见图D
答案
单选题
已知二元函数f(x,y)在点(x0,y0)处偏导数存在,则fx(x0,y0)=0,fy(x0,y0)=0是函数f(x,y)在该点取得极值的()  
A.必要不充分条件 B.充分不必要条件 C.充要条件 D.无关条件
答案
单选题
二元函数z=f(x,y)在点(x0,y0)可微是其在该点偏导数存在的()
A.必要条件 B.充分条件 C.充要条件 D.无关条件
答案
主观题
若函数z=f(x,y)在点(x0,y0)处的偏导数存在,则在该点处函数z=f(x,y)
答案
单选题
若函数z=f(x,y)在点(x0,y0)处的偏导数存在,则在该点处函数z=f(x,y)()
A.有极限 B.连续 C.可微 D.以上三项都不成立
答案
热门试题
设二元函数z=xy,则点Po(0,0)() 函数y=(x)在点x=0处的二阶导数存在,且"(0)=0,"(0)>0,则下列结论正确的是(). 设二元函数f(x,y)有连续偏导数,并且f(1,0)=f(0,1)。证明:在单位圆周上至少有两点满足方程y·∂f(x,y)/∂x=x·∂f(x,y)/∂y。 设函数f(x)具有二阶连续导数,且f(x)>0,f"(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是 设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,f′(0)=g′(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是(  )。 设二元函数z=xex+y+(x+1)ln(1+y),则dz|(1,0)____. 函数y=f'(x)在点x0处可导是函数f(x)在点x0处连续的()。 下列四类函数中,有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)f(y)”的是()。 函数f(x,y)在点P0(x0,y0)处的一阶偏导数存在是该函数在此点可微分的(  )。 设函数fi(x)(i=1,2)具有二阶连续导数,且fi″(x0)<0(i=1,2),若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某个邻域内,有(  )。 二元函数在点A连续,且f(A)<0, 则必存在A的某个邻域,使得在该邻域内二元函数值恒小于0() 二元函数在点A连续,且f(A)>0, 则必存在A的某个邻域,使得在该邻域内二元函数值恒大于0() 函数f(x,y)=arctan(x/y)在点(0,1)处的梯度等于(  )。 函数z=f(x,y)处可微分,且fx"(x0,y0)=0,fy"(x0,:y0)=0,则f (x,y)在P0(x0,y0)处有什么极值情况? 函数y=|x|+1在x=0处() 二元函数z=xy(3-x-y)的极值点是(  )。 设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2-x垂直,则当Δx→0时,该函数在x=x0处的微分dy是(  )。 函数z=f(x,y)在P0(x0,y0)处可微分,且f′(x0,y0)=0,fy′(x0,y0)=0,则f(x,y)在P0(x0,y0)处有什么极值情况?() 试证:若函数f(x,y)的两个偏导数在点(x0,y0)的某个邻域内存在且有界,则f(x,y)在点(x0,y0)处连续。 设二元函数F的两个偏导数F1′、F2′不同时为零,另一个二元函数u(x,y)满足F(∂u/∂x,∂u/∂y)=0(其中u(x,y)有二阶连续偏导数),证明:(∂2u/∂x2)·(∂2u/∂y2)=(∂2u/∂x∂y)2。
购买搜题卡 会员须知 | 联系客服
会员须知 | 联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    微信扫码登录 账号登录 短信登录
    使用微信扫一扫登录
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位