单选题

已知二元函数f(x,y)在点(x0,y0)处偏导数存在,则fx(x0,y0)=0,fy(x0,y0)=0是函数f(x,y)在该点取得极值的()  

A. 必要不充分条件
B. 充分不必要条件
C. 充要条件
D. 无关条件

查看答案
该试题由用户156****61提供 查看答案人数:19468 如遇到问题请 联系客服
正确答案
该试题由用户156****61提供 查看答案人数:19469 如遇到问题请联系客服

相关试题

换一换
单选题
对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?
A.必要条件而非充分条件 B.充分条件而非必要条件 C.充分必要条件 D.既非充分又非必要条件
答案
单选题
已知二元函数f(x,y)在点(x0,y0)处偏导数存在,则fx(x0,y0)=0,fy(x0,y0)=0是函数f(x,y)在该点取得极值的()  
A.必要不充分条件 B.充分不必要条件 C.充要条件 D.无关条件
答案
单选题
二元函数z=f(x,y)在点(x0,y0)可微是其在该点偏导数存在的()
A.必要条件 B.充分条件 C.充要条件 D.无关条件
答案
单选题
二元函数z=f(x,y)在点(x0,y0)处存在一阶连续偏导数是它在此点处可微的(  )。
A.充分条件 B.必要条件 C.充要条件 D.以上都不是
答案
单选题
考虑二元函数f(x,y)的四条性质: ①f(x,y)在点(x0,y0)处连续;②f(x,y)的一阶偏导数在点x0,y0)处连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的一阶偏导数存在, 则下列关系正确的是()  
A.②⇒③⇒① B.③⇒②⇒① C.③⇒④⇒① D.③⇒①⇒④
答案
单选题
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。
A.②⇒③⇒① B.③⇒②⇒① C.③⇒④⇒① D.③⇒①⇒④
答案
主观题
若函数z=f(x,y)在点(x0,y0)处的偏导数存在,则在该点处函数z=f(x,y)
答案
单选题
若函数z=f(x,y)在点(x0,y0)处的偏导数存在,则在该点处函数z=f(x,y)()
A.有极限 B.连续 C.可微 D.以上三项都不成立
答案
单选题
函数y=(x)在点x=0处的二阶导数存在,且"(0)=0,"(0)>0,则下列结论正确的是().
A.x=0不是函数(x)的驻点 B.x=0不是函数(x)的极值点 C.x=0是函数(x)的极小值点 D.x=0是函数(x)的极大值点
答案
单选题
函数f(x,y)在点P0(x0,y0)处的一阶偏导数存在是该函数在此点可微分的(  )。
A.必要条件 B.充分条件 C.充分必要条件 D.既非充分条件也非必要条件
答案
热门试题
设二元函数f(x,y)有连续偏导数,并且f(1,0)=f(0,1)。证明:在单位圆周上至少有两点满足方程y·∂f(x,y)/∂x=x·∂f(x,y)/∂y。 试证:若函数f(x,y)的两个偏导数在点(x0,y0)的某个邻域内存在且有界,则f(x,y)在点(x0,y0)处连续。 若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微 若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微 若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微() 偏导数fx(x0,y0),fy(x0,y0)存在是函数z=f(x,y)在点(x0,y0)连续的() 二元函数f(x,y)在点(0,0)处可微的一个充分条件是(  )。 设二元函数F的两个偏导数F1′、F2′不同时为零,另一个二元函数u(x,y)满足F(∂u/∂x,∂u/∂y)=0(其中u(x,y)有二阶连续偏导数),证明:(∂2u/∂x2)·(∂2u/∂y2)=(∂2u/∂x∂y)2。 z=(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件?() 已知函数f(x,y)满足fxy″=2(y+1)ex,fx′(x,0)=(x+1)ex,f(0,y)=y2+2y,求f(x,y)的极值。 z=f(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件()? 设函数f(x)具有二阶连续导数,且f(x)>0,f"(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是 设二元函数z=xy,则点Po(0,0)() 设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,f′(0)=g′(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是(  )。 设函数ψ(x)具有二阶连续导数,且ψ(0)=ψ′(0)=0,并已知yψ(x)dx+[sinx-ψ′(x)]dy=0是一个全微分方程,则ψ(x)等于(  )。 设二元函数z=xex+y+(x+1)ln(1+y),则dz|(1,0)____. 函数z=f(x,y)在点(x,y)处的偏导数存在是函数在该点可微的() 已知函数f(x)在x0处有二阶导数,且f’(x0)=0,f”(x0)=1,,则下列结论正确的是()。   设函数φ(x)具有二阶连续导数且φ(0)=0,并且已知yφ(x)dx+[sinx-φ(x)]dy=0是一个全微分方程,则φ(x)=(  )。 设z=f(x,y),φ(x,y)=0,其中f和φ对x、y具有二阶连续偏导数且φy′≠0,求z对x的二阶导数。
购买搜题卡 会员须知 | 联系客服
会员须知 | 联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    微信扫码登录 账号登录 短信登录
    使用微信扫一扫登录
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位