登录/
注册
题库分类
下载APP
帮助中心
首页
考试
搜题
APP
当前位置:
首页
>
查试题
>
公务员
>
事业单位
>
已知y=4x^3-5x^2+3x-2,则x=0时的二阶导数y”=()
单选题
已知y=4x^3-5x^2+3x-2,则x=0时的二阶导数y”=()
A. 0
B. 10
C. -10
D. 1
查看答案
该试题由用户799****78提供
查看答案人数:45027
如遇到问题请
联系客服
正确答案
该试题由用户799****78提供
查看答案人数:45028
如遇到问题请
联系客服
搜索
相关试题
换一换
单选题
已知y=4x^3-5x^2+3x-2,则x=0时的二阶导数y”=()
A.0 B.10 C.-10 D.1
答案
主观题
设z=f(x,y),φ(x,y)=0,其中f和φ对x、y具有二阶连续偏导数且φy′≠0,求z对x的二阶导数。
答案
单选题
设函数y=f(x)具有二阶导数,且了f′(x)<0,f"(x)<0,又△y=f(x+△x)-f(x),dy= f′(x)△x,则当△x>0时,有()
A.△y>dy>0 B.△y<dy<0 C.dy>△y>0 D.dy<△y<0
答案
主观题
设z=f(xy)/x+yφ(x+y),f、φ具有二阶连续导数,则∂2z/∂x∂y=____。
答案
判断题
若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微
A.正确 B.错误
答案
判断题
若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微
A.对 B.错
答案
判断题
若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微()
答案
主观题
设z=f(x+y,x/y,x),其中f具有连续二阶偏导数,求∂2z/(∂x∂y)。
答案
主观题
设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=____。
答案
单选题
设y=f(x)在(a,6)内有二阶导数,且,f″>0,则曲线y=f(x)在(a,6)内().
A.凹 B.凸 C.凹凸性不可确定 D.单调减少
答案
热门试题
设z=f(xy)/x+yφ(x+y),f和φ具有二阶连续导数,则∂2z/∂x∂y=____。
已知du(x,y)=[axy
3
+cos(x+2y)]dx+[3x
2
y
2
+bcos(x+2y)]dy,且u(x,y)具有二阶连续偏导数.则()
设y=f(x)满足关系式y″-2y′+4y=0,且f(x0)>0,f′(x0)=0,则f(x)在x0点处( )。
若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:()
偏导数fx(x0,y0),fy(x0,y0)存在是函数z=f(x,y)在点(x0,y0)连续的()
设函数fi(x)(i=1,2)具有二阶连续导数,且fi″(x0)<0(i=1,2),若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某个邻域内,有( )。
设y=f(x)是y″-2y′+4y=0的一个解,若f(x0)>0且f′(x0)=0,则f(x)在点x0处( ).
设函数φ(x)具有二阶连续导数且φ(0)=0,并且已知yφ(x)dx+[sinx-φ(x)]dy=0是一个全微分方程,则φ(x)=( )。
设点(x
0
,f(x
0
))是曲线y=f(x)的拐点,且函数f(x)存在二阶导数,则f"(x
0
)=().
y=f(x)是方程y″-2y′+4y=0的一个解,若f(x0)>0,f′(x0)=0,则函数f(x)( )。
设y=f(x)是微分方程y"-2y’+4y=0的一个解,又f(x0)>O,f’(x0)=0,则函数f(x)在点x0().
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有( )。
设函数f(x)=x
2
-2x+4,曲线y=f(x)在(x0,f(x0))处的切线与直线y=x-1平行,则x0=
设函数ψ(x)具有二阶连续导数,且ψ(0)=ψ′(0)=0,并已知yψ(x)dx+[sinx-ψ′(x)]dy=0是一个全微分方程,则ψ(x)等于( )。
函数y=(x)在点x=0处的二阶导数存在,且"(0)=0,"(0)>0,则下列结论正确的是().
设函数u=u(x,y)满足∂2u/∂x2-∂2u/∂y2=0及条件u(x,2x)=x,ux′(x,2x)=x2,u有二阶连续偏导数,则uxx″(x,2x)=( )。
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,f′(x)>0,f″(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明:a<x0<b。
设z=f(x2+y2),其中f具有二阶导数,则等于().
设z=f(x2-y2,exy),其中f具有连续二阶偏导数,求∂z/∂x,∂z/∂y。
设函数u=u(x,y),x=x(ξ,η),y=y(ξ,η)都有二阶连续偏导数,且∂x/∂ξ=∂y/∂η,∂x/∂η=-∂y/∂ξ。 证明:∂2u/∂ξ2+∂2u/∂η2=[(∂x/∂ξ)2+(∂y/∂ξ)2]·(∂2u/∂x2+∂2u/∂y2)。
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于E考试网网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
微信扫码登录
账号登录
短信登录
使用微信扫一扫登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了
APP
下载
手机浏览器 扫码下载
关注
公众号
微信扫码关注
微信
小程序
微信扫码关注
领取
资料
微信扫码添加老师微信
TOP